
Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 12-2023 

 

Dec 2023 | 456  

ENTIRE LITACT DOMINATION IN GRAPHS 

 

RENUKA LAKSHMI AVVARI 
Department of Sciences and Humanities, Vasireddy Venkatadri Institute of Technology, Nambur, A.P, India.  

VANI MANDA* 
Department of Sciences and Humanities, Vasireddy Venkatadri Institute of Technology, Nambur, A.P, India. 
*Corresponding Author Email: vani.maths14@gmail.com 

RAMALINGESWARARAO S 
Department of Engineering Mathematics and Humanities, S.R.K.R Engineering College, Bhimavaram, A.P, 
India. 

LAKSHMI PRASANNA NISSANKARA 
Department of Computer Science and Engineering, Vasireddy Venkatadri Institute of Technology, Nambur, 
A.P, India 

LAKSHMI SANGEETA SYAMALA 
Department of Science and Humanities, Mallareddy University, Kompally, Hyderabad, Telangana, India. 

 
Abstract 

Present palimpsest is aimed to put before a diverse domination variant namely entire domination number 
on the litact graph. we calculated some particular values of the defined variables for the graph families like 
Wheel, Cycle, Path, Complete, Bi partite graphs etc., Further a set of theorems were proved which includes 
some relations of the defined parameters in terms of the graph variables like order, size, the extreme values 
of edge and vertex degree, covering number of vertex and edge, vertex and edge independence number, 
domination/total/ connected domination number etc. Further the Nordhaus- Gaddum kinds of upshots are 
too established. 

Keywords: Litact Dominating Set, Litact Domination Number, Entire Litact Dominating Set, Entire Litact 
Domination Number. 

 
1. INTRODUCTION 

In this paper palimpsest we used finite nontrivial simple undirected connected graphs. 
The elucidations adopted in this paper are those used by F. Harary [1] and corresponding 
definitions can be found in V. R. Kulli [8]. 
 
2. PRELIMINARIES 

Definition 2.1: Cut vertex: Removing a vertex along with incident edges results in a 
graph with more components than the original graph then that vertex is said to be a cut 
vertex 
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Figure1 

Definition 2.2: End vertex: A vertex is said to be an end vertex if vertex of a graph has 
exactly one edge incident to it. 

 

Definition 2.3: Complement: The complement of a graph G is a graph H on the 
same vertices such that two different vertices of H are connected with an edge if and only 
if they are not connected with an edge in G. 

 

Definition 2.4:Entire litact domination number: A set 𝑊 of elements in a𝑙𝑖𝑡𝑎𝑐𝑡 𝑔𝑟𝑎𝑝ℎ 

is said to be an entire dominating set if every element not in 𝑊 is either adjacent or 
incident to at least one element in 𝑊. Entire litact domination number of 𝐺, is denoted by 
𝛾𝑒𝑚(𝐺) and is defined as 𝛾𝑒𝑚(𝐺) =  𝑚𝑖𝑛|𝑊|. 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/If_and_only_if
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𝛾𝜖𝑚(𝐺) = 1 

 
3. RESULTS 

For many out of the way consequences we need the following propositions.  

Theorem A[8]: For every graph 𝐺,g(𝐺)  ≤   𝑝 −  D(𝐺). 

Theorem B[8]: For every graph 𝐺, ⌈
𝑝

1+∆(𝐺)
⌉ ≤ 𝛾(𝐺). 

Theorem C[8]: For every graph 𝐺,𝛾(𝐺) ≤ 𝛽0(𝐺). 

Theorem D[8]: For every graph 𝐺, 𝛼0(𝐺) + 𝛽0(𝐺) = 𝑝 and if 𝐺 has no unhooked 

vertices, then 𝛼1(𝐺) + 𝛽1(𝐺) = 𝑝. 

Theorem E[8]:No isolated vertices in 𝐺 has𝑝 vertices then 𝛾𝑡(𝐺) ≤ 𝑝 − ∆(𝐺) + 1. 

Theorem F[2]:For each connected graph 𝐺 of order 𝑝, 𝛾(𝐺) ≥
𝑝

∆(G)+1
.  

Additionally the bound is attained if there will be a minimum dominating set 𝐷 such that  

(1) independent 

(2) for any vertex 𝑣 in 𝑉(𝐺) –  𝐷 there will be a unique vertex 𝑤 in 𝐷 such that  𝑁(𝑣) ∩
𝐷 = {𝑤}  

(3) deg 𝑣 = ∆(𝐺)for every vertex 𝑣 in 𝐷. 

Theorem G[8]:For a connected graph𝐺, ⌈
𝑑𝑖𝑎𝑚(𝐺)+1

3
⌉ ≤ 𝛾(𝐺). 

Theorem H[8]: For a connected graph 𝐺, 𝛾𝑐(𝐺) ≤ 𝑝 − ∆(𝐺). 
 
4. THEOREMS 

For some standard graphs the following premises are given 

Premise4.1: If 𝐶𝑝 of order 𝑝 ≥ 3then 𝛾𝑒𝑚(𝐶𝑝) = ⌊
𝑝

3
⌋ + 1. 

Premise4.2: If 𝑃𝑝 of order 𝑝 ≥ 3 then 𝛾𝑒𝑚(𝑃𝑝) = {
𝑝 − 1, 𝑖𝑓 𝑝 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3

𝑝 − 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Premise4.3: If 𝑊𝑝 of order 𝑝 ≥ 4 then 𝛾𝑒𝑚(𝑊𝑝) = {
7, 𝑝 ≡ 0(𝑚𝑜𝑑7)

𝑝 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Premise4.4: If 𝐾𝑝 of order 𝑝 ≥ 3 then 𝛾𝑒𝑚(𝐾𝑝) = {
5, 𝑝 ≡ 0(𝑚𝑜𝑑5)

𝑝 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Premise4.5: If 𝐾𝑚,𝑛 with 𝑝 = 𝑚 + 𝑛then 𝛾𝑒𝑚(𝐾𝑚,𝑛) = ⌊
𝑝

3
⌋ + 1. 

Premise4.6: If 𝐾1,𝑝 order 𝑝 ≥ 3then 𝛾𝑒𝑚(𝐾1,𝑝) = ⌊
𝑝

3
⌋ + 1. 

Succeeding theorem relates the parameters𝛾(𝐺), 𝛾′(𝐺)&𝛾𝑒𝑚(𝐺) 

Theorem 4.1: For each graph 𝐺 with 𝑝 ≥ 3  vertices  

(i) 𝛾(𝐺) ≤ 𝛾𝑒𝑚(𝐺) 
(ii) 𝛾′(𝐺) ≤ 𝛾𝑒𝑚(𝐺) 
(iii) 𝛾(𝐺) + 𝛾′(𝐺)  ≤ 2𝛾𝑒𝑚(𝐺). 

Proof: Let 𝑋 be a minimum entire litact dominating set of 𝑚(𝐺). Then 𝐷 =
{𝑢 ∈ 𝑉, for each 𝑢𝑣 ∈ 𝑋} ∪ {𝑋 ∩ 𝑉}forms a  dominating set of 𝐺. Then by the dominating 
set definition, 

We have|𝐷| ≤ |𝑋| 

Thus 𝛾(𝐺) ≤ 𝛾𝑒𝑚(𝐺)-------------------(1) 

A dominating set 𝐹 = {𝑢𝑣 ∈ 𝐸, for each 𝑢 ∈ 𝑋} ∪ (𝑋 ∩ 𝐸)in𝐺. Then by the edge dominating 
set definition, 

we have|𝐹| ≤ |𝑋| 

Thus 𝛾′(𝐺) ≤ 𝛾𝑒𝑚(𝐺)-------------------(2) 

From (1) and (2) we get 𝛾(𝐺) + 𝛾′(𝐺)  ≤ 2𝛾𝑒𝑚(𝐺). 

Next theorem we relates 𝑝, deg(𝑣) and entire litact domination number. 

Theorem 4.2: For every graph 𝐺, 𝛾𝜖𝑚(𝐺) < 𝑝 + ⌊
∆(𝐺)

2
⌋. 

Proof:  Let 𝐴 = {𝑣1, 𝑣2, 𝑣3, … … … 𝑣𝑛} be the set of vertices in𝐺 with deg (𝑣𝑖) ≥ 2 that is |𝐴| =
𝑝. Let 𝑣 be a vertex of degree ∆(𝐺).Let 𝑋 be a minimal entire litact dominating set and 
𝑦 ∈ 𝑋. Then 𝑦 is either a beside vertex or edge to at least one vertexin  (𝑉 ∪ 𝐸) − 𝑋, 
otherwise 𝑦 is either a beside vertex or edge to an vertex in 𝑋 itself. The minimal 
cardinality of an entire litact dominating set of 𝑚(𝐺) is 𝛾𝑒𝑚(𝐺) that is |𝑋| = 𝛾𝑒𝑚(𝐺). 

Clearly|𝑋| < |𝐴| + ⌊
∆(𝐺)

2
⌋.Thus 𝛾𝑒𝑚(𝐺) < 𝑝 + ⌊

∆(𝐺)

2
⌋. 

Next succeeding theorem relates about𝑝, 𝑞and 𝛾𝑒𝑚(𝐺). 

Theorem 4.3: For any connected graph 𝐺 of order 𝑝 ≥ 3, 𝛾𝑒𝑚(𝐺) > ⌊
𝑝+𝑞

3
⌋. 

Proof: Let vertex set be 𝐴 = {𝑣1, 𝑣2, 𝑣3, … … … 𝑣𝑛}and𝐵 = {𝑒1, 𝑒2 … … . . 𝑒𝑛} be edge set in 𝐺. 

Let 𝑋 be the set of elements in 𝑚(𝐺) is said to be an entire litact dominating set if every 
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element not in 𝑋 is either a beside vertex or edge to at least one vertex in  𝑋. The minimal 
cardinality of entire litact dominating set of 𝑚(𝐺) is 𝛾𝑒𝑚(𝐺) that is |𝑋| = 𝛾𝑒𝑚(𝐺). 

Clearly|𝑋| > ⌊
𝐴+𝐵

3
⌋ .Thus 𝛾𝑒𝑚(𝐺) > ⌊

𝑝+𝑞

3
⌋. 

In the succeeding corollary we get bounds for entire litact domination number. 

Corollary 4.1: For any graph 𝐺, ⌊
𝑝+𝑞

3
⌋ < 𝛾𝑒𝑚(𝐺) < 𝑝 + ⌊

∆(𝐺)

2
⌋. 

Proof: We can obtain the result by using theorem 4.2 and theorem 4.3 

In the next theorem we relates 𝛾𝑒𝑚(𝐺)& 𝑝 

Theorem 4.4: For any graph 𝐺 with 𝑝 ≥ 3 vertices,𝛾𝑒𝑚(𝐺) < ⌊
4𝑝

3
⌋ + 2. 

Proof: By using mathematical induction on p we can prove our outcome. We divide the 

natural numbers 𝑝 into 3 classes. (i) 𝑝 ≡ 0(𝑚𝑜𝑑3) (ii) 𝑝 ≡ 1(𝑚𝑜𝑑3) (iii) 𝑝 ≡ 2(𝑚𝑜𝑑3).  

Suppose 𝑝 = 3,4,5. Then inequality holds. 

Assume the outcome is true for all connected graphs with 𝑝 ≥ 3 vertices in 𝑚(𝐺). Let 
𝑚(𝐺1) be any connected graph with 𝑝 + 4 vertices so that order of 𝑚(𝐺) and 𝑚(𝐺1) belong 

to the same class and the order 𝑚(𝐺1)is the next natural number in the class. Let 
𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 be five vertices of 𝑚(𝐺), such that〈{𝑎, 𝑏, 𝑐, 𝑑, 𝑒} 〉 is connected. Then 𝑎, 𝑏,
𝑐, 𝑑 and 𝑒 are in the spanning tree 𝑇 of  𝑚(𝐺1) and 𝑇 has one of the following as a 
subgraph. 

 

Case 1:  Suppose 𝑇 contains 𝑇1 as a subgraph. Then 𝑋 ∪ {𝑎, 𝑎𝑑} is an entire litact 

dominating set in 𝐺. 

Case 2:  Suppose 𝑇 contains 𝑇2 as a subgraph. Then 𝑋 ∪ {𝑒, 𝑐} is an entire litact 
dominating set in 𝐺. 

Case 3:  Suppose 𝑇 contains 𝑇3 as a subgraph. Then 𝑋 ∪ {𝑏, 𝑑} is an entire litact 

dominating set in 𝐺. 

Case 4:  Suppose 𝑇 contains 𝑇4 as a subgraph. Then 𝑋 ∪ {𝑏, 𝑐} is an entire litact 
dominating set in 𝐺. 
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Case 5:  Suppose 𝑇 contains 𝑇5 as a subgraph. Then 𝑋 ∪ {𝑏, 𝑒} is an entire litact 
dominating set in 𝐺. 

Case 6:  Suppose 𝑇 contains 𝑇6 as a subgraph. Then 𝑋 ∪ {𝑏, 𝑒} is an entire litact 

dominating set in 𝐺. 

From all these cases,  

we have 𝛾𝑒𝑚(𝐺1) < |𝑋| + 2 < ⌊
4𝑝

3
⌋ + 2 

It is clear that 𝛾𝑒𝑚(𝐺) < ⌊
4𝑝

3
⌋ + 2 

This completes the proof. 

In the following corollary we get bounds for entire litact domination number. 

Corollary 4.2: For any graph 𝐺, ⌊
𝑝+𝑞

3
⌋ < 𝛾𝑒𝑚(𝐺) < ⌊

4𝑝

3
⌋ + 2. 

Proof: We can get the result ⌊
𝑝+𝑞

3
⌋ < 𝛾𝑒𝑚(𝐺) < ⌊

4𝑝

3
⌋ + 2 by using theorems 4.3 & 4.4 

In the succeeding theorem we relates entire litact domination number for trees , 𝑝, end 
vertices, cut vertices.  

Theorem 4.5: If 𝑇 is a tree of order 𝑝 ≥ 3, then (𝑖)𝛾𝑒𝑚(𝑇) ≤ 2(𝑠 + 1)(𝑖𝑖)𝛾𝑒𝑚(𝑇) ≤ 𝑝 − 𝑒 +
5 

Proof: Suppose 𝑇 is a tree of order 𝑝 ≥ 3. Then 𝑇 has not less than one cut vertex .Let 

the cut vertex set be 𝐶in𝑇 that is |𝐶| = 𝑠&𝑒 be the end vertices of 𝑇. Then for every end 
vertex 𝑢, 𝑆 ∪ {𝑢} is a entire dominating set in𝑚(𝑇).  

Thus 𝛾𝜖𝑚(𝐺) ≤ 2|𝐶 ∪ {𝑢}|  ≤ 2(|𝐶| + 1).Hence 𝛾𝜖𝑚(𝑇) ≤ 2(𝑠 + 1) 

If 𝑒 is the number of end vertices in 𝑇then 𝑠 = 𝑝 − 𝑒. 

Thus from the above inequality, we have 𝛾𝑒𝑚(𝑇) ≤ 𝑝 − 𝑒 + 5 

For all standard graphs with 𝑝 ≥ 3 vertices achieve this upper bound. 

In the next theorem we relates 𝛾𝑒𝑚(𝑇), 𝑝 & ∆(𝑇) 

Theorem 4.6: If 𝑇 is a tree of order 𝑝 ≥ 3, then 𝛾𝑒𝑚(𝑇) ≤ 𝑝 − ∆(𝑇) + 5. 

Proof: Let tree𝑇 is of order 𝑝 ≥ 3 then by Theorem 4.5 we possess𝛾𝑒𝑚(𝑇) ≤ 𝑝 − 𝑒 + 5.  

Since 𝑒 ≤ ∆(𝑇), 𝛾𝑒𝑚(𝑇) ≤ 𝑝 − ∆(𝑇) + 5. 

Succeeding theorem relates with 𝛾𝑒𝑚(𝑇), 𝑝 

Theorem 4.7: For every graph 𝐺,𝛾𝑒𝑚(𝐺) < 2𝑝 − 1. 

Proof: Let edge set be𝐸 = {𝑒1, 𝑒2, … … . . 𝑒𝑛}& cut vertex set be 𝐶 = {𝑐1, 𝑐2, … … … 𝑐𝑛} in 𝐺 

such that 𝐸 ∪ 𝐶 ⊆ 𝑉(𝑚(𝐺)). Let minimal entire dominating set be 𝑋1 in 𝑚(𝐺), 𝑋2 ⊆
(𝑉 ∪ 𝐸) − 𝑋1 in 𝑚(𝐺) and 𝑋2 ∈ 𝑁(𝑋1) then |𝑋1 ∪ 𝑋2| = |𝑉 ∪ 𝐸| < 2𝑝 
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     Hence|𝑋1 ∪ 𝑋2| < 2𝑝........................... (1) 

         Since 1 ≤ |𝑋2| 

 ⟹     1+|𝑋1| < |𝑋2| + |𝑋1| 

  ⟹ |𝑋1| < |𝑋1 ∪ 𝑋2| − 1 

   ⟹ |𝑋1| < 2𝑝 − 1 

  ∴ 𝛾𝑒𝑚(𝐺) < 2𝑝 − 1. 

Next corollary relates with 𝛾(𝐺), 𝛾𝜖𝑚(𝐺), 𝑝, ∆(𝐺) 

Corollary 4.3: For a graph 𝐺, 𝛾(𝐺) + 𝛾𝑒𝑚(𝐺) < 3𝑝 − ∆(𝐺) − 1 

Proof: We can get the result 𝛾(𝐺) + 𝛾𝑒𝑚(𝐺) < 3𝑝 − ∆(𝐺) − 1 by the addition of theorems 
A &4.7 

Next corollary relates with  𝛾𝑐 , 𝛾𝑒𝑚(𝐺), 𝑝, ∆(𝐺) 

Corollary 4.4: For each graph 𝐺, 𝛾𝑐(𝐺) + 𝛾𝑒𝑚(𝐺) < 3𝑝 − ∆(𝐺) − 1 

Proof: We can get the result 𝛾𝑐(𝐺) + 𝛾𝑒𝑚(𝐺) < 3𝑝 − ∆(𝐺) − 1 by adding theorems H &4.7. 

In the following theorem we relates 𝛾𝑒𝑚(𝐺), 𝛼0(𝐺)&𝛽0(𝐺) 

Theorem 4.8: For a graph 𝐺, 𝛾𝑒𝑚(𝐺) < 𝛼0(𝐺) + 𝛽0(𝐺) + 1 

Proof: Let minimum set of vertices be𝐴 = {𝑣1, 𝑣2, 𝑣3, … … … 𝑣𝑖}that enfolds every single 

one of the edges in 𝐺 such that |𝐴| = 𝛼0(𝐺) and maximal vertex set be 𝐵 =
{𝑣1, 𝑣2, 𝑣3, … … … 𝑣𝑗} which are not adjacent to each other such that |𝐵| = 𝛽0(𝐺). In (𝐺) , 

let minimal dominating set be 𝑋 in 𝑚(𝐺) and 𝑦 ∈ 𝑋. Then 𝑦 is either beside vertex or edge 

at least one element in (𝑉 ∪ 𝐸) − 𝑋, otherwise 𝑦 is either beside vertex or edge to an 
element in 𝑋 itself. Then 𝑋 itself forms a 𝛾𝑒𝑚(𝐺) − 𝑠𝑒𝑡. Clearly |𝐷| < |𝐴| + |𝐵| + 1.Thus 

𝛾𝑒𝑚(𝐺) < 𝛼0(𝐺) + 𝛽0(𝐺) + 1. 

Next corollary relates with  𝛾𝑒𝑚(𝑇), 𝑝 

Corollary 4.5: For any graph 𝐺,𝛾𝑒𝑚(𝐺) < 𝑝 + 1. 

Proof: By using theorems D &4.8 we can get 𝛾𝑒𝑚(𝐺) < 𝑝 + 1 and also it satisfies 

𝛾𝑒𝑚(𝐺) < 𝛼1(𝐺) + 𝛽1(𝐺) + 1 

Next theorem relates with 𝛾𝑒𝑚(𝐺), 𝛼0(𝐺)& 𝛾(𝐺) 

Corollary 4.6: In a graph 𝐺,𝛾𝑒𝑚(𝐺) < 𝛼0(𝐺) + 𝛾(𝐺) + 1. 

Proof: We can get the outcome 𝛾𝑒𝑚(𝐺) < 𝛼0(𝐺) + 𝛾(𝐺) + 1 by subtracting Theorem 4.8 
from Theorem C. 

Ensuing theorem relates with 𝑞, ∆′(𝐺)&𝛾𝑒𝑚(𝐺). 

Theorem 4.9: For each graph 𝐺, ⌊
𝑞

∆′(𝐺)+1
⌋ < 𝛾𝑒𝑚(𝐺). 
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Proof: Suppose edge set be 𝐸 = {𝑒𝑖/1 ≤ 𝑖 ≤ 𝑛} such that |𝐸(𝐺)| = 𝑞 and ∆′(𝐺) be the 
maximum degree of an edge in 𝐺. Suppose minimal dominating set be 𝑋 ⊆ (𝑉 ∪ 𝐸) in 
𝑚(𝐺) then 𝑋 itself forms a 𝛾𝑒𝑚(𝐺) − 𝑠𝑒𝑡. 

Then |𝑋|∆′(𝐺) < |𝐸(𝑚(𝐺))| − |𝑋| 

|𝑋|∆′(𝐺) + |𝑋| < |𝐸(𝑚(𝐺))| 

 |𝑋|(∆′(𝐺) + 1) < |𝐸(𝑚(𝐺))|------------ (1) 

By definition of litact graph 𝐸(𝐺) ∪ 𝐶(𝐺) = 𝑉(𝑚(𝐺)) 

We get |𝑋|(∆′(𝐺) + 1) > 𝐸(𝐺) = 𝑞------------- (2) 

From (1) and (2) 

|𝐸(𝑚(𝐺))| > |𝑋|(∆′(𝐺) + 1) > 𝐸(𝐺) = |𝑋|(∆′(𝐺) + 1) > 𝑞 

|𝑋| > ⌊
𝑞

∆′(𝐺) + 1
⌋ 

Thus ⌊
𝑞

∆′(𝐺)+1
⌋ < 𝛾𝑒𝑚(𝐺). 

Succeeding theorem interrelates with the parameters𝑑𝑖𝑎𝑚(𝐺), 𝛾(𝐺), 𝛼0(𝐺), 𝛾𝑐(𝐺)&𝛾𝑒𝑚(𝐺) 

Theorem 4.10: In a connected graph 𝐺,⌊
𝛾𝑒𝑚(𝐺)+𝛾𝑐(𝐺)

2
⌋ < 𝑑𝑖𝑎𝑚(𝐺) + 𝛾(𝐺) + 𝛼0(𝐺). 

Proof: Let minimal vertex set be 𝐴 ⊆ 𝑉(𝐺)that enfolds every single one of the edges in 𝐺 

such that |𝐴| = 𝛼0(𝐺). Further there will be an edge set 𝐸 ⊆ 𝐸′ where 𝐸′is the edge setthat 
are incident with the vertices of 𝑉 establishing the lengthy path in 𝐺in such a way that 
|𝐸| = 𝑑𝑖𝑎𝑚(𝐺). Let minimal dominating set be𝑆 = {𝑣1, 𝑣2, 𝑣3, … … … 𝑣𝑛} ⊆ 𝑉(𝐺)in 𝐺. 

Let〈𝑆′〉be connected subgraph, then 𝑆 itself is a 𝛾𝑐 − 𝑠𝑒𝑡.Or else there will be at least a 
vertex 𝑥 ∈ 𝑉(𝐺) − 𝑆′ and 𝑆′′=𝑆′ ∪ {𝑥} forms a connected minimal dominating set in 𝐺. Now 
in 𝑚(𝐺), let 𝑋 be a minimal dominating set in 𝑚(𝐺) and 𝑦 ∈ 𝑋.Then𝑦 is either adjacent or 

incident to at least one element in (𝑉 ∪ 𝐸) − 𝑋, otherwise 𝑦 is either adjacent or incident 

to an element in 𝑋 itself. Then 𝑋 itself forms a 𝛾𝑒𝑚(𝐺) − 𝑠𝑒𝑡.Clearly 
|𝑋|∪|𝑆′′|

2
< |𝐸| ∪ |𝐴| ∪

|𝑆′|. Thus ⌊
𝛾𝑒𝑚(𝐺)+𝛾𝑐(𝐺)

2
⌋ < 𝑑𝑖𝑎𝑚(𝐺) + 𝛾(𝐺) + 𝛼0(𝐺). 

Next corollary we interrelates 𝑑𝑖𝑎𝑚(𝐺), 𝛾𝑐(𝐺)&𝛾𝑒𝑚(𝐺) 

Corollary 4.7: For every graph, ⌊
𝛾𝑐(𝐺)−𝛾𝑒𝑚(𝐺)

2
⌋ < 𝑑𝑖𝑎𝑚(𝐺) + 1. 

Proof: we can get the result by subtracting corollary 4.6 from Theorem 4.9. 

Ensuing theorem relates with the parameters𝑝, 𝑞, 𝛿(𝐺)&𝛾𝑒𝑚(𝐺) 
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Theorem 4.11: For any graph 𝐺, 𝛾𝑒𝑚(𝐺) < 𝑝 + ⌊
2𝑞

𝛿(𝐺)
⌋ 

Proof: Let the vertex set and edge set be𝑝 and 𝑞in𝐺separately, 𝛿(𝐺) be the minimum 
degree in𝐺. Let 𝑋 be an entire dominating set in 𝑚(𝐺) and 𝑦 ∈ 𝑋. Then 𝑦 is either adjacent 

or incident to at least one element in (𝑉 ∪ 𝐸) − 𝑋, otherwise 𝑦 is either adjacent or incident 

to an element in 𝑋 itself.  That is 𝛾𝑒𝑚(𝐺) = |𝑋|. Each element 𝑉 − 𝑋 is neighbouring with 
at least 𝛿(𝐺)in 𝑋. This implies that 2𝑞 > |𝑉 − 𝑋|𝛿(𝐺) 

  ⌊
2𝑞

𝛿(𝐺)
⌋ > |𝑉 − 𝑋| 

 𝑝 + |𝑉 − 𝑋| < 𝑝 + ⌊
2𝑞

𝛿(𝐺)
⌋--------(1) 

 Clearly |𝑋| < 𝑝 + |𝑉 − 𝑋|-------(2) 

From (1) and (2) |𝑋| < 𝑝 + |𝑉 − 𝑋| < 𝑝 + ⌊
2𝑞

𝛿(𝐺)
⌋ 

  |𝑋| < 𝑝 + ⌊
2𝑞

𝛿(𝐺)
⌋ 

𝛾𝑒𝑚(𝐺) < 𝑝 + ⌊
2𝑞

𝛿(𝐺)
⌋ 

Ensuing theorem relates with 𝑝, 𝑞, ∆(𝐺)&𝛾𝑒𝑚(𝐺) 

Theorem 4.12: For any graph 𝐺, 𝛾𝑒𝑚(𝐺) ≥ ⌊
𝑝+𝑞

2∆(𝐺)+1
⌋.  

Proof: Proof follows from Theorem F. If there will be a minimum entire dominating set 𝑋 
satisfies entire independent set,then for every element 𝑥 in (𝑉 ∪ 𝐸) − 𝑋   there is an 
element 𝑦 in 𝑋 such that 𝑛(𝑥) ∩ 𝑋 = {𝑦}&|𝑛(𝑥)| = 2∆(𝐺) the bound is attained. This can 
be verified in figure. 

 

The following result involving the diameter of 𝐺 gives a lower bound for 𝛾𝑒𝑚(𝐺) 
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Theorem 4.13: In a graph 𝐺,⌈
𝑑𝑖𝑎𝑚(𝐺)+1

3
⌉ ≤ 𝛾𝑒𝑚(𝐺). 

Proof: Let 𝑋 be a 𝛾𝑒𝑚(𝐺) −  𝑠𝑒𝑡 in𝐺. Consider an arbitrary path of length 𝑑𝑖𝑎𝑚(𝐺). This 

diameteral path induces utmost two edges from the 〈𝑁[𝑥]〉 for each 𝑥 ∈ 𝑋. Furthermore, 
𝑋 is a 𝛾𝑒𝑚(𝐺) − 𝑠𝑒𝑡 thediameteral path involves utmost𝛾𝜖𝑚(𝐺) − 1  edges unite the vicinity 

of vertices in 𝑋. Hence 𝑑𝑖𝑎𝑚(𝐺) ≤ 2𝛾𝑒𝑚(𝐺) + 𝛾𝑒𝑚(𝐺) − 1. Thus⌈
𝑑𝑖𝑎𝑚(𝐺)+1

3
⌉ ≤ 𝛾𝑒𝑚(𝐺). 

Succeeding corollary relates with𝛾(𝐺)&𝛾𝑒𝑚(𝐺) 

Corollary 4.8: In a graph𝐺, 𝛾(𝐺) ≤ 𝛾𝑒𝑚(𝐺). 

Proof: by subtracting Theorem H from Theorem 4.13 we get 𝛾(𝐺) ≤ 𝛾𝑒𝑚(𝐺). 

In the succeeding corollary we obtain a relation for  𝑑𝑖𝑎𝑚(𝐺), 𝛾(𝐺)&𝛾𝑒𝑚(𝐺) 

Corollary 4.9: For any Graph 𝐺, 𝑑𝑖𝑎𝑚(𝐺) ≤ ⌈
3(𝛾(𝐺)+𝛾𝑒𝑚(𝐺))

2
⌉ − 1 

Proof: We can get the result by adding theorems H &4.13. 

In the succeeding theorem we obtain a relation for  𝛾𝑡(𝐺), 𝛽0(𝐺), 𝛽1(𝐺)&𝛾𝑒𝑚(𝐺) 

Theorem 4.14: For each graph 𝐺, 𝛾𝑒𝑚(𝐺) < 𝛾𝑡(𝐺) + 𝛽0(𝐺) + 𝛽1(𝐺). 

Proof: Let the maximum vertex set be 𝑈 = {𝑢1, 𝑢2, … … . . 𝑢𝑚} ⊆ 𝑉(𝐺) such that 

𝑑𝑖𝑠𝑡(𝑢, 𝑣) ≥ 2 and 𝑁(𝑢) ∩ 𝑁(𝑣) = 𝑥, ∀𝑢, 𝑣 ∈ 𝑈 and 𝑥 ∈ 𝑉(𝐺) −  𝑈.Clearly|𝑈| = 𝛽0(𝐺). 𝑈′ =
{𝑢′1, 𝑢′2, … … . . 𝑢′𝑚} ⊆ 𝐸(𝐺)is the maximum edge set in such a way that 𝑑𝑖𝑠𝑡(𝑢′, 𝑣′) ≥ 1. 

Implies that |𝑈′| = 𝛽1(𝐺).Let the minimal vertex set be 𝑉′ = {𝑣1, 𝑣2, … … . . 𝑣𝑚} ⊆ 𝑉(𝐺) −
𝑈 that enfolds every single one of the vertices in 𝐺. Let〈𝑉′〉be the subgraph with no 
isolated vertices, then 𝑉′forms𝛾𝑡(𝐺)-set. Otherwise, there will be at least one vertex 𝑤 ∈
𝑁(𝑉′) such that 𝑉′ ∪ {𝑤} forms a dominating set which is minimal. Let 𝑋 be a entire 

dominating set in 𝑚(𝐺) and 𝑦 ∈ 𝑋. Then 𝑦 is either adjacent or incident to at least one 

element in (𝑉 ∪ 𝐸) − 𝑋, otherwise 𝑦 is either adjacent or incident to an element in 𝑋 itself.  
That is 𝛾𝑒𝑚(𝐺) = |𝑋|. It follows that 𝛾𝑒𝑚(𝐺) < 𝛾𝑡(𝐺) + 𝛽0(𝐺) + 𝛽1(𝐺). 

Nordhaus-Gaddumkind outcomes: 

Theorem 4.15: For every graph 𝐺,  

i)𝛾𝑒𝑚(𝐺) + 𝛾𝑒𝑚(𝐺̅) < 2𝑝 ii)𝛾𝑒𝑚(𝐺). 𝛾𝑒𝑚(𝐺̅) < 2𝑝 

 
CONCLUSION 

This article introduces a strange domination parameter on the litact graph for stated 
graphs. The estimations of standard graphs and several general graphs were acquired. 
In addition, a range of outcomes were found in the guise of boundaries affixing the 
contemporary variables to multiple graph variants. Because domination theory occupies 
many fields of Science and Engineering and its application has been studied by many 
researchers who have made the domination field as research area, the present work is 
worthy of study.  
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