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Abstract  

This paper explores the use of a cost-effective Field Programmable Gate Array (FPGA) to deploy a 
Convolutional Neural Network (CNN) while ensuring optimal performance. CNNs are a type of Artificial 
Neural Network (ANN) designed for image processing and computer vision tasks. They are inspired by the 
intricate structure of the biological visual cortex and can identify complex patterns in large datasets. 
Compared to traditional deep learning models, CNNs are better at pattern recognition and require fewer 
computational resources for training and deployment. However, implementing CNNs on an FPGA presents 
challenges that require a thorough evaluation of performance metrics. Our research has two main 
objectives: first, we focus on training the CNN model to achieve high accuracy, and second, we optimize 
the hardware design to suit the FPGA platform. We use the LeNet5 CNN model and the Modified National 
Institute of Standards (MNIST) dataset for experimentation. High-level synthesis (HLS) is used to assess 
the CNN's performance on a VC707 FPGA board. Our results show an accuracy rate of over 97% and a 
latency of 299.3µs, demonstrating the effectiveness of our FPGA implementation in achieving robust CNN 
performance 

Keywords: Convolutional neural networks (CNNs), Field Programmable Gate Array (FPGA)), hardware 
implementation, optimization. 

 
1. INRODUCTION 

Convolutional neural networks (CNNs) have emerged as a prominent class of models 
resulting from the recent advancement of artificial neural networks (ANNs). Over time, 
they have consistently fulfilled their potential, capturing the attention of an expanding 
community of researchers across diverse scientific domains. Consequently, CNNs have 
found extensive application in image processing tasks like classification [1], segmentation 
[2], and vision [3,4], along with their utilization in the realms of the Internet of Things (IoT) 
[5], remote sensing [6], and robotics [7]. As a consequence, numerous pre-trained CNN 
models have been developed, such as LeNet [8], AlexNet [9], VGGNet [10], ResNet [11], 
and CaffeNet [12], among others. These models exhibit variations in depth and efficiency; 
those with deeper architectures possess more parameters, resulting in increased 
computational complexity. 

The implementation of Convolutional Neural Networks (CNNs) poses significant 
challenges concerning computational power and large-scale general-purpose operation. 
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Numerous implementations have been proposed for various platforms, including Central 
Processing Units (CPUs) [13], Graphical Processing Units (GPUs) [14], Application-
Specific Integrated Circuits (ASICs) [15], and Field-Programmable Gate Arrays (FPGAs) 
[16]. Among these, FPGAs exhibit superior performance in terms of power efficiency and 
the availability of reconfigurable internal resources [17]. The paramount principles for 
achieving optimal CNN hardware optimization on FPGA involve data reuse, internal 
hardware resource minimization, and data transmission reduction. The ultimate objective 
is to narrow the gap between the required performance and the performance capabilities 
offered by the hardware platform. This is a complex topic that has sparked the interest of 
many researchers. As a result, different approaches have been proposed in various 
studies [17-19]. According to these authors, over 90% of calculations are found in the 
convolutional layer [20]. Therefore, most approaches focus on optimizing this layer.  

Many optimization approaches for CNN have been suggested in the literature, each with 
its unique solutions and ideas. Some try to reduce the memory consumption of numerous 
parameters, while others aim to decrease the computational latency and the throughput 
of nested loops in convolutional layers. However, all these approaches strive to achieve 
the best possible optimization. 

In their study, Han et al. [21] utilized the network pruning technique to simplify and mitigate 
the overfitting of the CNN model. Subsequently, in another study, Han et al. [22] proposed 
deep compression to further decrease the memory requirements of CNNs by enforcing 
weight distribution. Chen et al. [23] employed fixed feature maps and weight 
representations to minimize computational resources and memory usage for the same 
purpose. Denton et al. [24], in a separate paper, also used the technique of singular value 
decomposition (SVD) for this purpose. Van Loan et al. [25] likewise reduced multiple 
weights and biases in the fully connected layers using the same technique. 

Zhang et al. [26], introduced a customized computation method for nested loops that 
involves loop unrolling, loop tilling, and loop exchange. This approach is specifically 
designed for convolutional layers, which require multiply and accumulate (MAC) 
operations of kernel weights and a sliding window of future maps in three dimensions. 
Over the years, various methods have been proposed in the literature to refine each level 
of these loops and study their impact on resources and performance. Ma et al. [20] 
conducted a detailed examination of the aforementioned nested loops of the convolutional 
layer. To build on their earlier work, the same authors attempted to improve the unrolled 
and tilling loops in subsequent work [27]. However, this approach improved the 
throughput of the convolutional layer at the expense of maximizing the utilization of 
internal resources. 

Based on the aforementioned works, we can note the following points: 

The hardware description language (HDL) has been the main basis for hardware 
implementation, while the recent emergence of new FPGA-compatible high-level 
programming tools, such as High-Level Synthesis (HLS), OpenCV, and OpenCL, 
has opened the door to a much more efficient development cycle, allowing 
engineers and researchers to rapidly prototype their hardware designs; 
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The focus is solely on the hardware design phase of the CNN models, ignoring the 
training phase, which is a separate but equally important step in implementing an 
accurate and optimized CNN mode. 

In this context, the objective of the work is to present a comprehensive exploration and 
design implementation of the CNN model, which has been carried out in two sequential 
phases: training implementation using the latest library optimization tools, followed by 
hardware design implementation on an FPGA platform using a high-level synthesis 
design methodology.  

The contributions of the proposed work are briefly listed below: 

We implemented the LeNet5 CNN model in Python, then compiled and accurately 
validated the training phase, and finally saved the weights and biases of the 
different filters for further optimization and implementation in the hardware phase; 

Using Vivado HLS, we implemented the basic architecture of the LeNet5 CNN 
model as a register transfer level (RTL) design using the saved weights and biases 
of the trained filters; 

Using Vivado HLS synthesis and analysis tools, we tested the hardware 
performance and then optimized the architecture by applying techniques such as 
loop unrolling, pipeline optimization, loop interchange, and folding techniques to 
decrease the latency;  

We then compared the performance of the basic architecture with the optimized 
architecture solutions using metrics such as latency, throughput, and resource 
utilization.  

This research paper is organized into several sections. First, Section 2 provides an 
overview of Convolutional Neural Networks (CNNs) as background information. Then, in 
Section 3, the approach for implementing a CNN model is explained. In Section 4, the 
results of both the hardware implementation and training phases are presented. Finally, 
the paper concludes in the last section.  
 

2. BACKGROUND 

This section provides a background on CNN basics in general and a detailed description 
of the LeNet5 CNN model architecture in particular. 

2.1 CNN Basics 

The CNN models comprise multiple layers, each tasked with learning distinct facets of 
the data. The primary layers encompass the convolutional layer, tasked with feature 
extraction from the input data; the activation layer, governing neuron behavior; the pooling 
layer, reducing convolutional output dimensionality; the fully connected layer, functioning 
as an input data classifier; and the output layer, generating the intended outcome.  
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2.2 LeNet5 Architecture 

The fundamental prerequisite for implementing transfer learning is the presence of both 
a pre-trained network and a suitable test dataset. Figure 1 shows the architecture of 
LeNet5. 

 

Fig. 1:  LeNet5 architecture 

 

3. OVERVIEW OF THE PROPOSED IMPLEMENTATION 

Figure 2 provides a comprehensive overview of the proposed implementation, delineating 
its principal constituents encompassing both the training and hardware implementation 
phases of the CNN model's intellectual property (IP) core. Each of these two phases is 
segmented into a sequence of sub-stages, which are further dissected into tasks 
expounded upon extensively in the ensuing sections. The training process is executed 
utilizing the Python programming language, whereas the hardware implementation is 
realized through employment of a High-Level Synthesis (HLS) tool. At inception of the 
training phase, a dataset is imported and subjected to preprocessing procedures to 
facilitate the training of the CNN model. Upon culmination of the validation process, the 
model's weight parameters are saved and subsequently transmitted to the dynamic DDR3 
Random Access Memory (RAM) component situated within the FPGA, earmarked for 
utilization within the HLS-based implementation. The entirety of the hardware system is 
encompassed within a singular FPGA chip; wherein external memory is furnished by the 
DDR3 DRAM. 
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Fig. 2: The proposed implementation overview 

3.1.1 Importing libraries 

Libraries are required for a Python implementation to perform many specialized tasks 
related to a given topic. In our case, the following libraries were imported and used for 
our FPGA-based CNN implementation:  

Keras [28], which is an open-source neural network library written in Python; 

Numpy, which is a library used for scientific computing and working with 
multidimensional arrays; 

TensorFlow, which is an open-source software library for numerical computation.   

3.1.2 Importing Dataset 

In this work, we used the MNIST open dataset available for training. This dataset consists 
of 60,000 training samples and 10,000 label samples. After importing, we printed 25 
random samples to confirm the success of the import, as shown in Figure 3. 

 

Fig. 3:  Sample from the imported MNIST dataset 
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3.1.3. Preprocessing of the Dataset 

Upon import, the dataset is categorized into three distinct subsets: 1) a training dataset 
employed for training the CNN model, 2) a validation dataset used during training to 
assess CNN performance at varying iteration epochs, and 3) a test dataset employed 
subsequent to the conclusion of the training phase for performance evaluation. 
Additionally, the initial 28×28 dataset undergoes resizing with a padding value of 2 to 
conform to the 32×32 input layer specifications of the LeNet5 architecture. It is then 
transformed into a 1D vector, with pixel values of the dataset normalized to a range 
between 0 and 1. The sequence of steps is illustrated in Figure 4. 

 

Fig. 4: Samples codes used to preprocess the dataset: (a) loading and splitting 
the dataset; (b) resizing the dataset to 32×32 using padding values of 2; (c) 

transforming the dataset into a 1-D vector; (d) normalizing the pixel values of the 
training and testing datasets 

3.1.4. Building the CNN’s Model 

This work focuses on the LeNet-5 CNN model, which was discussed in Section 2. The 
LeNet-5 was designed specifically to recognize handwritten numerical digits. Each of its 
convolutional layers uses a 5x5 kernel with a stride of 1 and is activated with Rectified 
Linear Units (ReLU). The pooling layers use a 2x2 kernel with a stride of 2. The 
convolutional layers have 6, 16, and 120 kernels, and the output layer has ten neurons, 
one for each digit from 0 to 9.   

3.1.5. Compilation of the Model 

Before starting the training, we introduced the essential compilation parameters during 
the learning phase. These parameters are the number of epochs, the batch size, the loss 
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function, the optimizer, and the evaluation metric function. Figure 5 illustrates the 
compilation parameter settings. 

 

Fig. 5: Settings for compilation parameters 

3.1.6 Saving the Model   

After validating the CNN model, the weights and biases are saved in H5 format for future 
use in the hardware implementation phase. 

3.2. Hardware design implementation 

This section will cover the design process of the CNN IP core HLS-based accelerator. 
Firstly, we will provide a thorough overview of its top-level design and methodology. Then, 
we will optimize convolutional layer operations step-by-step to reduce latency. Lastly, we 
will discuss the architecture and design parameters of an HLS-based accelerator to 
identify the best design space that meets project requirements. 

3.2.1. CNN IP Core Overview 

The CNN IP core is designed in a data flow structure that employs sequential tasks to 
form an architecture that promotes parallel processing. This, in turn, enhances throughput 
and reduces latency, as depicted in Figure 6. The output data buffers of each layer 
provide sufficient data for the next layer to process without any delay. As soon as data 
exits the buffer, fresh data replaces it instantly. As a result, this data flow structure permits 
optimization to synchronize the computational process between the convolutional and 
pooling layers. However, fully connected layers cannot benefit from this optimization as 
they require the processing of all data from the previous layer, which accounts for less 
than 1% of the overall computation and has no impact on latency. 

 

Fig. 6:  Dataflow structure of the CNN IP core 

3.2.2 Convolution layer optimization 

The convolutional layer plays a pivotal role in image processing by employing filters to 
discern fundamental attributes within the input data of an image. This process entails a 
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tridimensional linear operation involving the multiplication of an array kernel with the input 
array window. The kernel is iteratively applied to the input array window across various 
positions, leading to the creation of tridimensional arrays referred to as feature maps 

(FMs), which the subsequent layer will use. As shown in Figure 7, Nix and Niy represent 
the numbers of inpDut feature maps (IFMs) and output feature maps (OFMs), 

respectively. The dimensions of the IFMs are denoted as Nix and Niy, while the 

dimensions of the OFMs are denoted as Nox and Noy. Additionally, Nk signifies the 
number of kernels with dimensions x×y.  

 

Fig. 7: Convolutional operations and dimensions 

Within the convolutional layer, a hierarchical arrangement of four nested loops is 
employed: Loop 1 undertakes the convolutional operation by convolving the kernel values 
with their corresponding window values within the Input Feature Maps (IFMs). 
Subsequently, Loop 2 traverses through the depth dimension, denoted as Nif, of the IFMs. 
Loop 3 systematically traverses the spatial dimensions Nix and Niy of the Feature Maps 
(FMs), while Loop 4 comprehensively scans the dimension Nof pertaining to the Output 
Feature Maps (OFMs). The comprehensive depiction of the convolutional process is 
elucidated through Equation (1) and Algorithm 1. 

(𝒏𝒐, 𝒌, 𝒎) = ∑ ∑ ∑ 𝑶𝒖𝒕𝒑−𝟏(𝒏𝒊, 𝒎 × 𝑺 + 𝒙, 𝒌 × 𝑺 + 𝒚) × 𝒘𝒆𝒊𝒈𝒉𝒕(𝒏𝒊, 𝒏𝒐, 𝒙, 𝒚)𝒙
𝑰=𝟏

𝒚
𝑱=𝟏

𝑵𝒊𝒇
𝒏𝒊=𝟏 +

𝑩𝒊𝒂𝒔(𝒏𝒐)                                                                                                                                                  (1)   

In the given equation, "no" represents a value between 1 and Nof, while "S" denotes the 
sliding stride. For a better understanding of the computational operations involved in the 
convolutional layer, refer to Algorithm 1, which provides a detailed pseudo-code. 
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     Convolutional Pseudo-code 

Nof_FMs:                                              // Loop 4 
   For (no=0;  no<Nof ; no++)   {                          
     Row_output:                                     // Loop 3 Rows  
        For (k=0 ; k<Noy ; k=+S)     { 
           Col_output:                                  // Loop 3 Cols 
              For (m=0 ; m<Nox ; m=+ S)   { 
                Nif_FMs :                                   // Loop 2  
                  For (ni=0 ; ni<Nif ; ni++)     {                 
                     Row_Kernel:                      // Loop 1 Rows  
                       For (J=0 ; J < y ; J++)        {                 
                         Col_Kernel:                      // Loop 1 Cols 
                            For (I=0 ; I < x ; I++)        {  
               Outp(no; k, m) += Outp-1(ni;  k+ I, m + J) × weightp-1(ni, no, I, J)                  
       } 
                                                        }  
                                                   } 
                                    Outp (no; k, m) = Outp (no; k, m) + bias(no) 
                                               } 
                                            } 
                                      } 

Algo. 1: The pseudo-code of convolutional layer 

As shown in the previous Figure and algorithm, the operations of the convolutional layer 
are based on nested loops that perform additions and multiplications over arrays. Nested 
loop and array partitioning optimization techniques are used to increase the 
computational efficiency of the convolutional layer, which improves computational 
throughput and latency while optimizing hardware resources, and then accelerates data 
access to enable pipelining. Nested loop optimization techniques include loop unrolling 
and function pipelining techniques. Therefore, a trade-off between latency and hardware 
resources must be made with the above optimizations.  

Figure 8.a shows the entire unrolling of Loop 1, which is the innermost loop corresponding 

to the parallel processing of multiple hardware units of the same size as the x×y of the 
kernel. However, the data flow must be parallel to ensure that these units have enough 
processing data. Overuse of unrolling loops and loop pipelining optimizations, on the 
other hand, not only speeds up the network, but also creates bottlenecks that require data 
access organization. Figure 8.b illustrates the functions and units have enough 
processing data. Overuse of unrolling loops and loop pipelining optimizations, on the 
other hand, not only speeds up the network, but also creates bottlenecks that require data 
access organization. Figure 8.b illustrates the functions and loops pipelining. 
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Fig. 8: Optimization techniques; (a) Unrolling Loop 1; (b) pipelining functions and 
loops 

Based on the above-mentioned information, our approach is to first implement the IP core 
of the CNN in a sequential structure and then in a dataflow structure to highlight the 
contribution of each one. Then we use the dataflow structure to progressively apply 
optimization techniques using the # Pragma optimization directives available in the HLS 
tools [29]. The different design options are compared using metric analysis and synthesis 
tools. Table 1 summarizes the different design options adopted for CNN’s IP core design. 

Table 1: Design optimization steps 

 
 
4. RESULTS AND DISCUSSION  

In this section, the primary outcomes of the project are presented and analyzed. The first 
sub-section covers the results obtained during the training phase, while the second sub-
section delves into the main results of the implementation of the CNN IP core design.  

4.1. Training Phase  

We conducted ten epochs of training for the CNN model and utilized the learning history 
to evaluate both models by plotting the accuracy and loss curves, as illustrated in Figure 
9. According to the curves, the model displays rapid learning with a linear increase in 
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accuracy during the initial two epochs. Subsequently, the curve starts to flatten, indicating 
that the learning process stabilizes and requires fewer epochs to complete the model's 
training.  

Additionally, the validation demonstrates linear growth over the first two epochs and then 
starts to level off until it follows the accuracy curve entirely from the seventh epoch 
onwards. This suggests that the model is functioning effectively, learning quickly in the 
initial stages before stabilizing. However, in the test set, the loss drops gradually for the 
first four epochs and then flattens out for the remaining epochs, indicating that our CNN 
model is generalizing well to data that it has not encountered before. 

 

Fig. 9: Training performance curves within 10 epochs: (a) model accuracy 
evolution within 10 epochs; (b) model loss evolution within 10 epochs 

We also generated a concise overview of the training phase's outcomes using the 
confusion matrix, visually depicted in Figure 10. This facilitated a comprehensive 
statistical evaluation of the F-Score parameter, encompassing precision and recall 
metrics. Figure 11 illustrates that while labels 2, 3, 6, and 9 exhibit F-Scores below the 
mean, they still achieve F-Scores surpassing 97%, indicating a highly satisfactory 
performance level.  

For instance, the prediction pertaining to label 8, manifesting the weakest F-Score, can 
be attributed to the occurrence of 20 false positives in relation to this label within the 
entirety of true labels. 
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Fig. 10: The confusion matrix 

 

Fig. 11:  F-Score histogram 

4.2 Hardware Implementation Phase 

In Figure 12.a, the analysis metrics for the baseline implementation's performance are 
presented in a sequential structure without optimization. On the other hand, Figure 12.b 
displays the analysis metrics of the design_1 implementation's performance in a dataflow 
structure without optimization. By comparing the two figures, it becomes evident that 
design_1 performs better than the baseline implementation in terms of latency. This is 
because design_1 leveraged parallelism between layers due to the dataflow structure, 
while the baseline implementation was constrained by its sequential structure. 
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Fig. 12: Analysis metrics of sequential and dataflow Structure: (a) analysis 
metrics of the design in sequential structure; (b) analysis metrics of the design in 

dataflow structure 

We used HLS to produce various reports such as analysis, synthesis, and comparison 
reports. These reports helped us gain a complete understanding of each design option 
and make well-informed decisions based on their advantages and disadvantages. Upon 
analyzing the reports, we arrived at a conclusion based on the statistical analysis 
illustrated in Figure 15. The figures demonstrate that designs 4, 5, and 6 outperform the 
others in terms of latency and hardware resource utilization. Designs 6 and 7 have better 
latency but still use more resources than design 4. Therefore, when choosing a design 
option, it's crucial to consider the balance between latency and resource usage. Despite 
the improvements in latency for designs 5 and 6, design 4 remains the most efficient 
overall for our requirements. We used HLS to produce various reports such as analysis, 
synthesis, and comparison reports. These reports helped us gain a complete 
understanding of each design option and make well-informed decisions based on their 
advantages and disadvantages. Upon analyzing the reports, we arrived at a conclusion 
based on the statistical analysis illustrated in Figure 13. The figures demonstrate that 
designs 4, 5, and 6 outperform the others in terms of latency and hardware resource 
utilization. Designs 6 and 7 have better latency but still use more resources than design 
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4. Therefore, when choosing a design option, it's crucial to consider the balance between 
latency and resource usage. Despite the improvements in latency for designs 5 and 6, 
design 4 remains the most efficient overall for our requirements.   

 
Fig. 13: Utilization and performance estimates of all implemented options: (a) 
utilization estimates of FFs and LUTS; (b) utilization estimates of BRAMs and 

DSP48E; (c) Performance estimates. 

Table 2 presents a comparative study of the latency performance obtained by our 
approach for a single image with those of [30], [31], and [32]. We achieve 14.3x and 6.3x 
speedups for the first two works, respectively, by applying optimization directives such as 
function pipelining, loop unrolling, and array partitioning. Concerning the third work, the 
results are close, and the difference is explained by the fact that they used a fixed-16 
representation while ours was a fixed-25. 

Table 2:  Performance comparison of the LeNet5 with previous works 

 [30] [31] [32] [Ours] 

CNN Model Lenet5 Lenet5 Lenet5 Lenet5 

Platform ZC706 ZC709 ZC706 VC707 

Precision Fixed-25 Fixed-8-16 Fixed-16 Fixed-25 

Frequency (Mhz) 100 100 100 100 

Latency 3ms 1.318ms 175.7µs 299.3µs 
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5. CONCLUSIONS  

Our work involved exploring and implementing Convolutional Neural Networks (CNNs) 
on a Field-Programmable Gate Array (FPGA). To achieve this, we followed a two-phase 
approach. The first phase was initial training, which we carried out using relevant libraries 
in Python. The second phase was hardware implementation on an FPGA-based High-
Level Synthesis (HLS) platform. We used the open MNIST dataset for our experimental 
results, which showed that our training phase implementation was highly effective, with 
an accuracy rate exceeding 97%. For hardware implementation, we applied filters derived 
from the MNIST dataset during the training phase. We leveraged the FPGA's 
reconfigurability to apply various HLS optimization directives to the design, and through 
careful assessment and comparison of various metrics using the synthesis and analysis 
capabilities of the HLS platform, we identified the most optimal performance configuration, 
with a latency of 299.3µs. Our research presents opportunities for improvement and 
expansion. We propose integrating dynamic data representation into deeper neural 
networks to reduce memory usage and increase latency and throughput. We also see 
potential in exploring the synergies of combining OpenCV with HLS for video processing 
applications, such as object detection and person tracking. 
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