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Abstract 

Uncertainty theory examines the behaviors of uncertain parameters on networks. We consider uncertain 
and predetermined capacities, respectively, on arcs and intermediate vertices of an uncertain network. An 
objective is to find the non-conservative flow that is maximum at the destination and also at intermediate 
nodes with minimum cost. This goal is achieved by determining minimum cost paths which send the 
maximum flow to the sink.  In this paper, we solve this problem by incorporating the idea of uncertainty 
theory.  We define this problem, give its mathematical model and present efficient algorithms to solve our 
newly formulated problem. The illustrated example verifies more efficiency of our approach since it 
increases the flow values by 19% to 44% for different confidence levels than that of the classical solutions. 
The relation of confidence level with the maximum flow value and the minimum cost are also observed.  

Index Terms: Maximum Flow Model, Intermediate Storage, Cost Minimization Model, Network Simplex Method, 
Uncertainty Theory. 

 
1. INTRODUCTION  

The vertex and arc parameters in majority of traditional network optimization problems 
have deterministic values. Numerous scholars applied their findings in these deterministic 
networks to both flow maximization and cost minimization problems. Flash back on 
maximum flow problem (MFP) and minimum cost problem (MCP) are mentioned below. 
Now we consider a simple example to highlight how non-conservative flow optimizes the 
flow value. Only 15.5 units of the maximum amount of commodities can be moved to 
Vertices 3 and 4, if the flow directions are as shown in Figure 1. This is because the 
capacity of the arcs are given beside them. However, if we have the capability of storing 
the commodities in Vertex 2, we can remove 20.5 units of commodities from Vertex 1, 
which is higher than the prior value. The flow of issues like evacuation, network 
communication, water and oil supply, etc. are therefore optimized by intermediate storage 
facilities. Such type of flow is called non-conservative flow. Additionally, cost 
minimization- the focus of our research is integrated to such non-conservative maximum 
flow values pulled-out from the source. However, we work on a network with uncertain 
arc capabilities, as shown in Figure 2. 
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Figure 1: A Simple Instance of a 
Deterministic Network, Arcs with 

Flow Capacities 

Figure 2: A Simple Instance of an 
Uncertain Network

The study of classical deterministic network problems has led to the development of 
numerous effective algorithms to maximize the flow value in various approaches, such as 
the fundamental simplex method proposed by Fulkerson and Dantzig [1], the augmenting 
path method by Ford and Fulkerson [2], and the layered network method by Dinic [3]. 
Using the Ford and Fulkerson algorithm, Edmonds and Karp [4] presented the flow along 
the shortest path. Karzanov [5] studied the preflow-push algorithm, and Goldberg and 
Tarjan [6] enhanced the preflow-push technique’s performance. In a two terminal network, 
Wilkinson’s [7] solution to the earliest arrival flow problem (EAFP) maximizes the flow at 
each time step. Minieka [8] used a pseudo-polynomial running time algorithm to solve the 
EAFP and a polynomial running time approach to solve the lexicographic maximum(lex-
max) static flow problem. Using a genetic algorithm with flow matrices to represent each 
solution, Munakata and Hashier [9] addressed the MFP. The lex-max dynamic flow 
problem was resolved in polynomial time by Hoppe and Tardos [10]. The open shortest 
path first (OSPF) weight setting problem is an extension of MFP, and Ericsson et al. [11] 
suggested a genetic approach to solve it. Later, Gen et al. [12] suggested a genetic 
algorithm based on priorities to solve the MFP. Dhamala et al. [13], and Pangeni and 
Dhamala [14] reviewed on network optimization. Pangeni and Dhamala [15] studied flow 
dynamics in continuous-time with average arc capacities. Pyakurel et al. [16] studied an 
abstract strategy for the deterministic network evacuation problem with storage at 
intermediate vertices. Pyakurel et al. [17], [18], [19], [20] have also studied the network 
flow problems using the contraflow approach using partial, efficient, and continuous 
deterministic models. 

In a directed network with fuzzy capacity, the maximum allowable flow was first introduced 
by Kim and Roush [22] who also offered some theoretical results relating to the topic. 
Further studies of MFP for fuzzy network can be found in [24]. 

The shortest path problem (SPP), one of the fundamental and crucial issues in network 
optimization, seeks to identify the shortest path (in terms of either time, cost or distance) 
between a given source vertex and a given sink vertex. The minimal cost flow problem 
has a number of effective algorithms. The basic version of successive shortest path 
method, which retains optimal solution at every step and attempts to achieve a viable 
flow, was independently created by Busacker and Gowen [25]. To study the MCP, primal-
dual algorithm was proposed by Ford and Fulkerson [26] and capacity scaling technique 
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by Edmonds and Karp [4]. To increase the effectiveness of the ϵ-relaxation method, 
Bertsekas and Castanon [27] proposed an auction procedure. In order to answer the 
minimal cost flow problem, Cai et al. [28] took into account the capacity, delay and cost 
of three time-varying arc weight functions. Ciurea and Ciupal [29], who modified preflow 
algorithms for maximum flow, introduced sequential and parallel algorithms for minimum 
flows. The minimal cost multicommodity flow problem in dynamic networks with time-
varying capacity and arc transmission time functions were studied by Fonoberova and 
Lozovanu [30].  

A generalization of the maximum flow of minimum cost problem for the situation of 
minimizing trip expenses and time were made by Mircea and Ciurea [31]. The exterior 
simplex type algorithm was proposed by Paparrizos et al. [32] for the cost minimization 
of flow. When the time horizons of the weight functions were discrete, Pyakurel [33] 
provided a modified minimal cost flow algorithm that computed the maximum dynamic 
flow and the earliest arrival flow in strongly polynomial time. 

Various SPP contributions are also seen in various uncertain paradigms. An SPP in an 
uncertain environment views the network’s associated parameters as typically 
nondeterministic, which can be caused by several sorts of uncertainty, such as a lack of 
evidence, weather, road conditions, traffic congestion and multiple sources of information 
from various experts etc.  

Randomness was thought to be a nondeterministic phenomenon by certain scholars. 
They employed random variables to describe the non-deterministic properties of the issue 
parameters and applied probability theory to network optimization problems as a result. 
Frank and Hakimi [20] were the first to introduce a random network. Since then, other 
scholars have made major contributions to the study of random SPP, see [34], [35], [36]. 

The estimated probability distribution, however, is inappropriate to identify non-
deterministic occurrences when the observational data are insufficient [37], [38]. The most 
practical and cost effective way to estimate data is to take into account the opinions of 
experts in order to get around this issue. The fuzzy set theory [39] is seen as one method 
to deal with imprecision in this context.  

In order to address uncertain phenomena in human life, Liu [38] established and improved 
the theory of uncertainty. Liu [41] used uncertain network theory to model the scheduling 
issue. The maximum flow problem was initially examined by Han et al. [42] using an 
uncertainty theory perspective. To ascertain the expected maximum flow of an uncertain 
network, the authors in this case used the 99-method [41]. Gao [43] suggested two distinct 
models of SPP:  

(i) α-shortest path and  

(ii) Most shortest path.  

He used Dijkstra’s method to solve the crisp equivalents of these two models. 

The minimal cost flow problem on an uncertain network was answered by Ding [44] by 
creating an algorithm.  
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Ding [46] suggested α-maximum flow model of an uncertain network based on the 
chance-constrained model and solved the appropriate deterministic transformation of the 
model with a preflow-push algorithm at various confidence levels of α. Sheng and Gao 
[47] addressed the SPP while taking into account a two-fold uncertain hybrid environment. 
Shi et al. [48] also created an expected value model and a chance-constrained model of 
uncertain random MFP. To solve the relevant deterministic equivalents of the presented 
models, they used the Ford-Fulkerson algorithm. Nowadays, uncertainty theory is 
frequently used across many areas when data are not accessible. 

A significant contribution carried out on intermediate storage flow models can be found in 
Dhamala and Nagurney [53]. For a review of models and algorithms for discrete 
evacuation planning network problems, see Dhamala [49]. Various network flow problems 
with excess flow storage at the intermediate vertices are addressed in [50], [51], [52]. 

Research Gap. The deterministic network is taken into account in the literature while 
discussing the MFP and SPP. In random, fuzzy or uncertain network, the issue of 
nonconservative flow i.e., the network flow having intermediate storage is unaddressed. 
Pyakurel and Dempe [54], in particular, used the network having deterministic arc 
capacities with storage at intermediate vertices to solve the MFP. Ding [46] suggested 
the α- maximum flow model of an uncertain network and Shi et al. [48] suggested the 
models of MFP for uncertain random network, both in conservative formulations.  

So, there is a research gap in uncertain networks not having the features of non-
conservative flow and in deterministic networks not addressing the uncertain behavior of 
the arc capacities. The SPP without accounting intermediate storage at the vertices, Ding 
[44] analyzed the minimal cost flow problem having uncertain arc capacities. To fill the 
research gap, we will focus on two issues in this study: the flow maximization problem 
and the cost minimization problem pertaining to the intermediate storage in the situation 
of the network with uncertain arc capacities. 

Our Contribution. By using the lexicographic maximal flow algorithm [8] for static 
network, we calculate the maximum flow with intermediate storage on the network with 
uncertain arc capacities, which is the extension of the work of Pyakurel and Dempe [54] 
from the deterministic network flow problem to uncertain network flow problem. Using the 
maximum flow determined in the first phase of our research as the input, the second 
phase of our work extends the cost minimization issue of Ding [44] by incorporating 
intermediate storage at the network vertices with uncertain arc capacities.  

For the solution of cost minimization problem, we search the shortest path in terms of 
cost of the flow in the arcs. While searching the minimum cost path, if the total arc 
capacities of the preceding arcs of an intermediate vertex exceeds the capacity of its 
succeeding arcs, the flow is stored at that vertex. Network simplex method is used to get 
the total minimum cost of the flow to the sink. The maximum flow that was drawn from the 
source with intermediate storage in the previous phase would therefore be included in the 
cost minimization. For the first time this work has been done on a network with uncertain 
arc capabilities with intermediate storage. 
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Organization of the Paper. The structure of the article is as follows. The theory of 
uncertainty is discussed in Section 2. The flow models with excess flow storage that 
maximizes flow with minimal cost are proposed, and supporting theorem and lemma are 
also mentioned in this section. The development of the solution algorithms is covered in 
Section 3. Using a numerical example, the proposed algorithm’s effectiveness is shown 
in Section 4. The paper is wrapped with conclusion in Section 5. 
 
2. PRELIMINARIES 

2.1 Notions on Uncertainty 

In this subsection, we provide some fundamental definitions and an applicable theorem 
on uncertainty that are utilized in our research. 

An σ-algebra is a nonempty set of subsets of the real line R that is closed under countable 
unions and complements. The Borel σ-algebra is the smallest σ -algebra on R that 
contains all open sets (or, equivalently, closed sets). Measurable sets, often known as 
Borel sets, are the elements of the Borel algebra. 

The following notions are according to [38], [40], [41]: 

Let 𝛤 be a nonempty set, and L a σ-algebra over 𝛤. Each element ∧ ∈ L  is called an 
event. A set function 𝑀 from L to [0,1] is called an uncertain measure, if it satisfies the 
following axioms: 

 Axiom 1. Normality: 𝑀{𝛤} = 1 for the universal set 𝛤 

  Axiom 2. Duality: 𝑀{∧} + M{∧𝑐} = 1, for any event ∧ 

 Axiom 3. Sub-additivity: For every countable sequence of events ∧1, ∧2, …   we 
have 

𝑀 {⋃ ∧𝑖
∞
𝑖=1 } ≤ ∑ 𝑀{∧𝑖}

∞
𝑖=1  

 Axiom 4. Product: Let( 𝛤𝑘, L𝑘, 𝑀𝑘) be uncertainty spaces for 𝑘 =  1, 2, . . . , 𝑛. Then, 

the product uncertain measure 𝑀 is an uncertain measure on the product σ-

algebra 𝐿1  ×  𝐿2  ×. . .×  𝐿𝑛 satisfying 

𝑀{∏ ∧k} = min1≤k≤nMk

𝑛

𝑘=1
{∧k} 

An uncertain variable is a measurable function 𝜉 from an uncertainty space (𝛤, 𝐿,𝑀) to 
the set of real numbers such that {𝜉 ∈  𝐵}  =  {𝛾 ∈  𝛤 | 𝜉(𝛾)  ∈  𝐵} is an event for any Borel 

set 𝐵 of real numbers. 

The uncertain variables 𝜉1, 𝜉2, . . . , 𝜉𝑛 are said to be independent if, 

𝑀{⋂ (𝜉𝑖  ∈  𝐵𝑖)} 
𝑛

𝑖=1
= ⋀ 𝑀{𝜉𝑖  ∈  𝐵𝑖} 

𝑛

𝑖=1
 

For any Borel sets 𝐵1, 𝐵2, . . . , 𝐵𝑛 of real numbers. 
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The uncertainty distribution 𝛷 of an uncertain variable 𝜉 is defined by 

𝛷(𝑥) =  𝑀{𝜉 ≤  𝑥};  ∀𝑥 ∈  𝑅. 

An uncertain variable ξ is called zigzag, if it has a zigzag uncertainty distribution  

ɸ(x) =

{
  
 

  
 

0,               𝑥 ≤ a
𝑥 − 𝑎

2(𝑏 − 𝑎)
,        𝑎 ≤ 𝑥 ≤ 𝑏

𝑥 + 𝑐 − 2𝑏

2(𝑐 − 𝑏)
, 𝑏 ≤ 𝑥 ≤ 𝑐

1,               𝑥 ≥ 𝑐
    

 

And denoted by Z(a, b, c), where a, b, c are real numbers with a < b < c. 

The inverse uncertainty distribution of zigzag uncertain variable Z(a, b, c) is 

   ɸ-1(𝛽)={
(1 − 2𝛽)𝑎 + 2𝛽𝑏,               𝛽 < 0.5
(2 − 2𝛽)𝑏 + (2𝛽 − 1)𝑐,    𝛽 ≥ 0.5

 

An uncertainty distribution 𝛷(x) is said to be regular, if it is a continuous and strictly 
increasing function with respect to x at which 0 < ɸ(x) < 1, and lim

x→−∞
ɸ(x) =

 0,   lim
x→∞

ɸ(x) =  1.   

Theorem 1. Let 𝜉1, 𝜉2, … , 𝜉𝑛 be independent uncertain variables with regular uncertainty 

distributions ɸ1, ɸ2, . . ., ɸn respectively. If the function (𝑥1, 𝑥2, … , 𝑥𝑛 ) is strictly increasing 
with respect to 𝑥1, 𝑥2, … , 𝑥𝑛 and strictly decreasing with respect to 𝑥𝑚+1, 𝑥𝑚+2, … , 𝑥𝑛 then 

the uncertain variable, 𝜉 = 𝑔(𝜉1, 𝜉2, … , 𝜉𝑛 ) has an inverse uncertainty distribution, 

𝜑-1(𝛽)= g(ɸ1
−1(𝛽),  ɸ2

−1(𝛽), . . ., ɸ𝑚
−1(𝛽), ɸ𝑚+1

−1 (1 − 𝛽), ɸ𝑚+2
−1 (1 − 𝛽), . . . , ɸ𝑛

−1 (1 − 𝛽)). 

2.2 Mathematical Formulation 

Consider a directed network N = (V, A) that has a set of vertices V and a set of arcs A 
with uncertain arc capacities, where the vertices are the points where the arcs cross each 

other i.e., A ⊂ V × V with |V| = n. Let the flow value in the arc (i, j) be fij ≥ 0. Also, the flow 
in the arc (i, j) has an upper bound uij , and the cost of a unit flow is wij. Let s and t 
represent, respectively, the flow starting vertex (source) and the flow terminating vertex 
(sink). 

Let storage si ≥ 0 be allocated at vertex i. additionally, the storage capacity and 
supply/demand at the vertex i are vi and mi, respectively. Here, mi is taken to be positive 
for the flow supplying vertices and negative for the flow demanding vertices. Assume that 
F, which is a function of ξij , the uncertain arc capacity of an arc (i, j), is the entire flow 
from the source (beginning) vertex s to the sink (terminating) vertex t in the uncertain 
network Ñ. The uncertainty distribution and it’s inverse corresponding to the uncertain 

variable ξij are ɸij andɸ𝑖𝑗
−1, respectively. The notations used in this paper are listed in Table 

1 for convenient reference. 
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Table 1: The Common Notations 

N A deterministic network R The set of real numbers 

Ñ An uncertain network L σ-Algebra over Γ, where Γ is a nonempty set 

V The set of vertices ∧ An event on L 

A The set of arcs M An uncertain measure on L 

Fij The amount of flow in arc (i, j) (Γ, L, M) An uncertainty space 

uij The capacity of flow in arc (i, j) ξ An uncertain variable 

wij The cost of unit flow in arc (i, j) B A Borel set 

s, t The source and sink, respectively ɸ The uncertainty distribution 

si The amount of flow stored at vertex i ɸ -1 The inverse uncertainty distribution 

vi The capacity of flow storage at vertex i β The confidence level 

mi The supply/demand of vertex i F The total flow from the source 

We now divide our problem into two parts. The flow maximization problem with 
deterministic intermediate storage and uncertain arc capacity is formulated in Phase I. 
After that, in Phase II, we apply the flow of Phase I to the cost minimization issue in 
uncertain network. 

Phase I: Flow maximization model. Max-Flow: (with excess flow storage) 

max [ 𝐹 + ∑ 𝑠𝑖 𝑖∈𝑉\{𝑠,𝑡} ]                                    (1) 

∑ 𝑓𝑠𝑗 −𝑗:(𝑠,𝑗)∈𝐴 ∑ 𝑓𝑗𝑠 = 𝐹𝑗:(𝑗,𝑠)∈𝐴                                               (2) 

∑ 𝑓𝑖𝑗 −𝑗:(𝑖,𝑗)∈𝐴 ∑ 𝑓𝑗𝑖 + 𝑠𝑖 = 0  ∀𝑗:(𝑗,𝑖)∈𝐴  𝑖 ∈ 𝑉\{𝑠, 𝑡}                               (3) 

∑ 𝑓𝑡𝑗 −𝑗:(𝑡,𝑗)∈𝐴 ∑ 𝑓𝑗𝑡 = −(𝐹𝑗:(𝑗,𝑡)∈𝐴 − ∑ 𝑠𝑗  𝑗∈𝑉\{𝑠,𝑡} )                             (4) 

0 ≤ 𝑓𝑖𝑗 ≤ 𝜉𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴                                                             (5) 

0 ≤ 𝑠𝑖 ≤ 𝑣𝑖 , 𝑖 ∈ 𝑉                                                           (6) 

Maximizing the total flow out from the starting vertex (source) is the objective function 
(1)’s main goal. The total mass supplied by the source s is given by equation (2). The 
mass balance for the intermediate vertices is given by equation (3). The total mass 
demanded by the sink t is given by equation (4). The capacity constraints of the arcs and 
vertices, respectively, are given by inequations (5) and (6). 

The constraints in (5) can be rewritten as the constraints in (13), and using the Theorem 
2, the rewritten constraints may be transformed into deterministic capacity constraints in 
(7). The remodeling of Max-Flow model maximizes the objective function (1) with respect 
to the constraints (2)-(4), (6) and the following constraints (7). 

0 ≤ 𝑓𝑖𝑗 ≤ ɸ𝑖𝑗
−1(1 − 𝛽) ,      (𝑖, 𝑗) ∈ 𝐴                                         (7) 

Phase II: Cost minimization model. To solve the SPP in terms of cost, the excess flow 
must be stored at the intermediate vertices, when the total flow entering a vertex exceeds 
the total capacity of the arcs originating from that vertex. In this case, the deterministic 
cost minimization (Min-Cost-D) model with excess flow storage is formulated as follows: 

 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 43 Issue: 05-2024 
DOI: 10.5281/zenodo.11145894 

 

May 2024 | 83  

Min-Cost-D: (with excess flow storage) 

min ∑ 𝑤𝑖𝑗 (𝑖,𝑗)∈𝐴 𝑓𝑖𝑗                                                    (8) 

∑ 𝑓𝑖𝑗 =𝑗:(𝑖,𝑗)∈𝐴 𝑚𝑖 , 𝑖 = 𝑠,𝑚𝑖 > 0                                                  (9) 

∑ 𝑓𝑖𝑗 −𝑗:(𝑖,𝑗)∈𝐴 ∑ 𝑓𝑗𝑖 + 𝑠𝑖 = 0  ∀𝑗:(𝑗,𝑖)∈𝐴  𝑖 ∈ 𝑉\{𝑠, 𝑡}   (10)  

0 ≤ 𝑓𝑖𝑗 ≤ 𝑢𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴                                              (11) 

0 ≤ 𝑠𝑖 ≤ 𝑣𝑖 , 𝑖 ∈ 𝑉                                                                 (12)  

The goal of the objective function (8) is to reduce overall flow costs. The mass supplied 
from the source is provided by constraints (9). However, in other circumstances the same 
amount of demand for the sink would not be satisfied due to the network’s minimum cut 
capacity. Equations (10) refer to intermediate storage restrictions. Constraints (11) and 
(12) provide limits on the capacity of arcs and vertices, respectively. 

Traditional minimum cost flow problems presuppose that the arc’s capacity is fixed. 
However, in reality, it is not. Because the probability distribution of arc capacity cannot be 
constructed due to uncertainty factors or a lack of data, the believe degree approach is 
successfully applied even though there is a lack of data. 

The Min-Cost-D model can be reformulated to the uncertain network Ñ = (V, A, ξ) with 

uncertain arc capacity ξ = {ξij / (i, j) ∈ A} and uncertain measure constraints with a certain 
confidence level β. This reformulated model minimizes the objective function (8) with 
respect to the constraints (9), (10), (12) and the following constraints (13). 

𝑀{𝑓𝑖𝑗 ≤ ξ𝑖𝑗} ≥ 𝛽,     (𝑖, 𝑗) ∈ 𝐴                                             (13) 

The constraints (13) mean that the flows need to satisfy flow bound with a given 
confidence level β. 

The following theorem is the conversion theorem for the constraints (13). 

Theorem 2. In a uncertain network Ñ = (V, A, ξ), let ξij be independent uncertain variables 

with regular uncertain distribution ɸ(𝑥), for (i, j) ∈ A. Then, the constraints (13) are 
equivalent to the inequalities 

𝑓𝑖𝑗 ≤ ɸ𝑖𝑗
−1(1 − 𝛽) ,      (𝑖, 𝑗) ∈ 𝐴                                               (14) 

Proof. Since, the measure of uncertain variable is self-dual, we have 

𝑀{𝑓𝑖𝑗 ≤ ξ𝑖𝑗} + 𝑀{𝑓𝑖𝑗 ≥ ξ𝑖𝑗} = 1  ,     (𝑖, 𝑗) ∈ 𝐴 

Using the constraints (13) in this relation, we have 

𝑀{𝑓𝑖𝑗 ≤ ξ𝑖𝑗} = 1 − 𝑀{𝑓𝑖𝑗 ≥ ξ𝑖𝑗} ≥ 𝛽  ,     (𝑖, 𝑗) ∈ 𝐴 

This implies  

 𝑀{𝑓𝑖𝑗 ≥ ξ𝑖𝑗} ≤ 1 − 𝛽   𝑓𝑖𝑗 ≤ ɸ𝑖𝑗
−1(1 − 𝛽),    (𝑖, 𝑗) ∈ 𝐴 

Hence, the theorem is established. 
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Therefore, the newly reformulated model of Min-Cost-D minimizes the objective function 
(8) with respect to the constraints (9), (10), (12) and the constraints (14) using many 
efficient solution methods. Furthermore, the uncertainty distribution of the minimum cost 
can be created by selecting various values of β. 

The following theorem and lemma further illustrate the properties of the latest 
deterministic model. 

Theorem 3. [44] Let ξij be independent uncertain variables with regular uncertainty 
distributions ɸ(𝑥), for all arc (i, j) ∈ A, respectively. Then, the newly reformulated model 
subject to constraint (13) is non-decreasing with respect to the confidence level β. 

Lemma 1. [44] If the feasible set of the newly reformulated model provided by constraint 
(13) is empty for β0, then it is empty for any β > β0. 

This lemma gives permission to choose the bisection method to find the greatest 
confidence level β for a feasible flow. 
 
3. SOLUTION ALGORITHM     

For the flow maximization and cost minimization flow problems, both in the context of 
intermediate storage and uncertain environment, we provide two explicit approaches. 
When taking into account intermediate storage, the first algorithm performs well in 
obtaining the maximum flow from the source. 

ALGORITHM 1 [45] Uncertain Measure Based Maximum Flow with Excess Flow Storage 

 Input: Given an uncertain network, Ñ = (V, A, fij , ξij , ɸ ij), 0 < β < 1. 

1. Evaluate ɸ𝑖𝑗
−1(1 − 𝛽),    (𝑖, 𝑗) ∈ 𝐴. 

2. Assign the capacities of the associated arcs in the deterministic network to the 
values from Step 1. 

3. Take the length of each arc as unit and find the shortest distance between the 
intermediate vertices from the     source, where the flow to vertex i violates the 

capabilities of the succeeding arcs i.e., ∑ 𝑓𝑗𝑖(𝑗,𝑖)∈𝐴 > ∑ ɸ𝑖𝑗
−1

(𝑖,𝑗)∈𝐴 (1 − 𝛽). 

4. Prioritize the vertices of Step 3 more highly which are farthest from the source. 

5. Along with the provided sink, turn the vertices from Step 3 into virtual ones and use 
those as sinks. 

6. From the priority of Step 4, determine the maximum flow in the modified network 
with the single source and multiple sinks. 

7. To acquire the maximum flow at the specified sink and storage at the specified 
intermediate vertices, turn on the network N solution while turning off the virtual 
vertices and arcs. 

 Output: Flow with the maximum value in the uncertain network Ñ. 
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Theorem 4. The maximum flow with intermediate storage at the intermediate vertices 
obtained by the above Algorithm 1 is feasible as well as optimal and has polynomial time 
complexity. 

Proof. The following three steps are how we prove the theorem. 

Feasibility. By employing the associated inverse distributions of the uncertain variables 
with various values of β, the values of Step 1 may be evaluated. Step 2 is possible since 
it is an extract of Theorem 1 and uses the reformulated model of Max-Flow model. The 
distance of each intermediate vertex and of the sink can be calculated by counting the 
number of vertices (one arc is equivalent to one unit distance) from the source to other 
vertices, and the priority order can be assigned to the intermediate vertices where 
capacity violation of the successor arcs occur. Steps 3 and 4 are therefore feasible. Step 
5 is possible since the creation of virtual arcs and vertices do not go against capacity 
restrictions. It is also possible to figure out the maximum flow using Step 4’s priority order. 
Turning off the virtual vertices and arcs take feasibility into account. 

Optimality. The maximum flow value is estimated to the sink with the highest priority after 
creating virtual vertices with virtual arcs and applying a flow conservation restriction at the 
intermediate vertices. The flow is directed toward the sink in the residual network up until 
the appearance of the augmenting path. Keep in mind that the length of the backward 
arcs is regarded to be negative compared to the length of the equivalent forward arcs. 
The previous method is used to compute the greatest flow to the intermediate vertex in 
the following iteration, which is designated as the sink in this iteration and has the second-
largest distance, or the second largest arc length from the source. Following this 
approach, we obtain the optimal flow in the network with virtual vertices and arcs without 
the need for intermediate storage, according to Minieka [8], and Pyakurel and Dempe 
[54]. The reformulated model of Max-Flow model achieves the required result by shutting 
off the virtual vertices and arcs after returning the flow to their corresponding vertices. 

Complexity. The proposed Algorithm 1 has polynomial time complexity, just like the 
algorithm from Minieka [8]. 

As a result, the theorem is established. 

The next algorithm, which is carried out after using the previous algorithm, works well to 
achieve the minimum flow cost to the maximum flow extracted from the source in non-
conservative flow case. 

ALGORITHM 2: Minimum Cost with Uncertain Arc Capacities with Excess Flow Storage 

 Input: Given Ñ = (V, A, fij, ξij, wij, φij, si, vi, mi), β ∈ (0, 1) and an error tolerance, ϵ. 

1. Use the bisection method to set β, if 1 − 0 > ϵ. Go to Step 2 after creating a 
deterministic network with each arc’s capacity  

2. set to 𝑢𝑖𝑗 = ɸ𝑖𝑗
−1(1 − 𝛽). If not, proceed to Step 3. 

3. Obtain the first feasible solution (use Big M method). If a feasible solution cannot be 
found, set β = 1 and go to Step 1. Otherwise, proceed to Step 1 and set β = 0. 
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4. Set β = 0, make the deterministic network N = (V, A). Also, set 𝑢𝑖𝑗 = ɸ𝑖𝑗
−1(1 − 𝛽). 

5. Prepare the priority ordering of the sink’s access routes based on their lowest cost. 

6. According to the order of Step 4, direct the flow to the direction of the sink. 

7. When ∑ 𝑓𝑗𝑖(𝑗,𝑖)∈𝐴 > ∑ 𝑢𝑖𝑗(𝑖,𝑗)∈𝐴 , store the surplus flow at vertex i. 

8. Use the network simplex technique to get the minimal total flow cost 
 ∑ 𝑤𝑖𝑗 (𝑖,𝑗)∈𝐴 𝑓𝑖𝑗  and the β-minimum cost flow in the network N. 

 Output: Uncertain minimum cost flow with predetermined confidence level β. 

Theorem 5. Algorithm 2 computes the minimum cost with polynomial time complexity to 
the maximal flow computed by the Algorithm 1 in uncertain network. 

Proof. The following are the steps how we prove the theorem. 

Feasibility and Optimality. Lemma 1 permits to use the bisection method within the 
domains of confidence level β and the error tolerance ϵ. Theorem 2 converts the uncertain 
network to the network with deterministic arc capacities so that the optimum flow can be 
sent toward the sink respecting the arcs capacities. Theorem 3 describes non decreasing 
feature of newly reformulated model with constraints (13) with respect to confidence level 
β. Network simplex algorithm, one of the fastest algorithm can solve the newly 
reformulated model. The priority ordering of the sink’s access routes is based on their 
lowest cost. To overcome the minimum cut scenario of the network, virtual nodes and 
arcs with zero costs are created to store the excess flow. Later, the stored flow is sent 
back to the corresponding intermediate 

vertices which gives solution to the newly reformulated model. 

Complexity. The proposed Algorithm 2 has polynomial time complexity, just like the 
algorithm of Minieka [8]. 

Hence, the theorem is proved. 
 
4. ILLUSTRATIVE EXAMPLE  

Maximum Flow with Intermediate Storage. As seen in Figure 3, an uncertain network Ñ = 
(V, A, ξ) is considered. Here, the source and sink are taken as the vertices 1 and 4, 

respectively. The flow capacity ɸ𝑖𝑗
−1(1 − 𝛽) for randomly taken value of confidence level 

β = 0.7, β ∈ (0, 1) are calculated and unit flow costs wij of the arcs are provided in Table 

2. ɸ𝑖𝑗
−1(1 − 𝛽) is assumed constant for constant value of ξij. 

 The maximum flow value with intermediate storage for β = 0.7 is 7.2 and comes from the 
source [see Figure 4]. For different values of confidence level β, the flow paths of 
maximum flow values and the corresponding intermediate storage values are presented 
in Table 3. The uncertainty distribution of the maximum flow with and without intermediate 
storage is presented in Figure 6. This figure depicts the benefit of non-conservative flow 
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over the conservative flow. Also, we can choose appropriate values of the confidence 
level for desired value of the optimal flow. 

 

Figure 3: A Simple Instance of Uncertain Network Ñ = (V, A, ξ) 

Table 2: The Per Unit Flow Cost and Capacity Information of Uncertain Network 

 

 

Figure 4: 𝛃= 0.7 Maximum Flow, Arc with Capacity and Flow Value (uij, fij), Vertex i 
with Storage si and Dashed arc are Virtual with Flow Capacity (Intermediate 

Storage Case). The Maximum Flow F = 7.2. 

Minimum Cost with Intermediate Storage. The total minimum cost flow to the vertex 4 
(which is taken as sink) for randomly taken β = 0.7 with storage at the intermediate 
vertices is represented in the Figure 5 and for other values of β is calculated in Table 3. 
Since the objective function is linear, the total minimum flow cost is calculated using the 
network simplex algorithm or any other suitable method can also be used. From among 
the minimum costs of various paths, the smallest (in value) cost and its corresponding 
path can be chosen as the required objective.  

The uncertainty distribution of total minimum cost is shown in Figure 7. This figure shows 
the inverse variation of the total minimal cost with the values of confidence level. 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 43 Issue: 05-2024 
DOI: 10.5281/zenodo.11145894 

 

May 2024 | 88  

Additionally, we can determine the entire minimum flow costs to every vertex other than 
the sink for various confidence level β values and obtain the desired minimal cost. 

 

Figure 5: 𝛃= 0.7 Minimum Cost Flow Path, arc with Unit Flow Cost, Capacity and 
Flow Value (wij, uij, fij) (Excess Flow Storage Case), Dashed Arcs are Virtual with 

Flow Capacity, ∑𝐰𝐢𝐣𝐟𝐢𝐣  = 82.4, and Maximum F = 6+1.2 = 7.2 

Table 3: The Flow Path, Flow Value and Minimum Cost in uncertain Network for 
Different Confidence Levels 

 
 
5. CONCLUSION  

For a variety of reasons, the network parameters in network optimization issues might not 
be deterministic. Different theories, such as fuzzy theory, uncertainty theory, and 
probability theory, assist us in overcoming these challenges. Probability theory provides 
answers to network optimization problems when the parameters exhibit random 
characteristics. Probability distributions cannot be created and probability theory is invalid 
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due to insufficient data. The development of fuzzy theory and uncertainty theory is 
necessary to address issues in such non-random environments. These theories employ 
the appropriate measure to address the relevant issues. The measure of union of events 
is where the conflict between the possibility measure of fuzzy theory and the uncertain 
measure of uncertainty theory resides. They are utilized in many ways. Here, we applied 
the uncertainty theory’s uncertain measure to network flow problem. 

The traditional network flow problems of flow maximization and cost minimization on 
deterministic arc capacities were expanded in this research to the same problems with 
non-conservative flow features having uncertain environments in arcs capacities. The 
main difference between conservative and non-conservative flow problems is the concern 
of storage facility of the flow at the intermediate vertices. In intermediate storage 
scenarios, we first developed the flow maximization model, then the cost minimization 
flow model, both in uncertain arc capacity environment and are then converted to their 
deterministic equivalents by utilizing the uncertainty theory. The maximized flow is pulled 
out in lexicographic order from the source to the sink by developing an efficient Algorithm 
1 with a similar level of complexity to that of earlier literary works. This maximized flow 
was used as the input and Algorithm 2 is developed to send the flow to the sink via the 
path having minimum cost. So, we optimized the flow value in the first phase and then 
the cost in the second phase. Domination of the non-conservative flow value over the 
conservative flow value are depicted graphically. 19% to 44% flow values for different 
values of confidence level are increased in non-conservative flow, which verifies the 
benefit of storage facility at the intermediate vertices, see Figure 6. The inverse variation 
of the minimum cost and both type (conservative and non-conservative) of maximum flow 
values with the confidence level values are also depicted in Figures 6 and 7. This variation 
can be used to get the desired value of the flow and the flow cost for a specific value of 
confidence level. For example; for the confidence level 0.5, the non-conservative flow 
value is 8 and the minimum cost is 89. Such type of problems, which have uncertainty in 
real life, are relevant both conceptually and practically. 

Figure 6: Uncertainty Distribution of 
the Max Flow with and without 

Intermediate Storage 

Figure 7: Uncertainty Distribution of 
the Minimum Total Cost
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