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Abstract 

The use of neighborhood search techniques to address a practical issue faced by agricultural investors is 
examined in this study. The problem is named as agricultural land investment problem with precedence 
constraints and it has an important impact on the agriculture issues. The tackled problem can be viewed 
as a variant of the well-known classical 0-1 knapsack problem where precedence constraints are imposed 
on pairs of items. Precedence constraints taking into account a precedence relation between items. This 
paper first simulates the considered problem as precedence constraints knapsack problem and presents 
a mathematical representation model to represent it. Then, an iterative three-stage neighborhood search 
method is proposed for optimizing the problem. The proposed method consists of three stages. First 
stage applies a greedy procedure in order to construct a feasible solution. Second stage applies local 
search procedures in order to enhance the quality of the solutions at hand. Third and last, in order to 
broaden the search space, a random neighborhood destruction approach is introduced. Finally, the 
effectiveness of the suggested approach is assessed and contrasted with the outcomes obtained by 
greedy and local search techniques. The presented method is competitive and efficient since it produces 
excellent solutions in a reasonable amount of time. 
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1. INTRODUCTION 

Numerous real-world scenarios can be represented as combinatorial optimization 
problems in order to be solved. One of these situations belongs to agriculture, where a 
large agricultural land need to be invested. The problem is that, there are numerous 
plant varieties that can be grown with little money and time. The price of raising each 
plant varies. However, every one of them is making profit. In addition, according to the 
needed of some farmers, precedence constraints are imposed, i.e., there are several 
chains of plants must be considered (Nancel-Penard, et al., 2022). However, the 
objective is to maximize the profit of land investment with the considering of precedence 
constraints (Aslan, et al., 2023). This problem is a variant of agricultural land investment 
problem (ALIP) presented by Saleh in (Saleh, 2018) with the variant, where precedence 
constraints have been presented and imposed on pairs of items. Precednce 
constrainted taking into account a precedence relation between items, i.e., some items 
must precede some others (Samphaiboon & Yamada, 2000). The tackled problem is 
named as the precedence constraints agricultural land investment problem (abbreviated 
to PCALIP). This paper investigates the use of neighborhood search techniques for 
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optimizing the considered problem. As is obvious, the PCALIP is an NP-hard problem. 
The precedence constraints knapsack problem (abbreviated PCKP) is a well-known 
combinatorial optimization problem that can be used to simulate the PCALIP in order to 
streamline the treatment of the issue. In fact, there are numerous real-world scenarios 
that can be recreated as members of the KP family in a range of fields, including the 
computer sciences. (Kellerer, et al., 2014).  

The PCALIP is characterized by a knapsack of capacity ; a set  of  items, and a set  
of precedence relationships imposed on items, where . A precedence 
relationship  exists if item  can be selected and placed in the knapsack only if 

item  is in the knapsack. Each item  is represented by a nonnegative weight  

and a profit . The PCALIP is the problem of maximizing the total profit of products that 

can fit in the knapsack and whose combined weight does not go above the knapsack's 
carrying capacity while also satisfying the order of precedence. In order to tackle and 
optimize the considered problem, it is simulated as an optimization problem, known as 
the precedence constrained knapsack problem (Boland, et al., 2012). Therefore, the 
mathematical representation of PCALIP can be written as follows: 

                                               ………... (1) 

                                                   ………… (2) 

                          ………… (3) 

                                                         ..………. (4) 

Where , is equal to 1 if the i-th item is placed in the knapsack (i.e., selected in 

the solution); and 0 otherwise.  Equation (1) is the objective function, where the goal is 
to maximize the total profit. Equation (2) represent the knapsack constraint with the 
capacity c, which impose that the total weight must not exceed the knapsack capacity. 
Equation (3) represents the precedence constraints which ensure the precedence 
relationships. Equation (4) represents the integral constraints (i.e., the item is selected 
when “ ” or excluded from the solution when “ ”). In order to avoid trivial 

cases, it is assumed that: the input data , are positive integers, 

and  (Hifi et al., 2015).  

We can observe, from the mathematical representation of the PCALIP, that the solution 
domain of a 0-1 knapsack problem can be characterized by Equation (2) and Equation 
(4). By adding, Equation (3) the problem is changed and become another variant of the 
classical 0-1 knapsack problem, known as the precedence constrained knapsack 
problem. In other words, the PCALIP reduces to the classical knapsack problem when 
the precedence constraint is omitted, i.e.,  (Boland et al., 2012).  

This paper is organized as follows. Section two reviews some related works. Section 
three introduces a random neighborhood search approach for optimizing the PCALIP. 
Section four evaluates the performance of the proposed method and analyzes the 
obtained results. Finally, section five summarizes the contents of the paper. 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN：1671-5497 

E-Publication: Online Open Access 
Vol: 42 Issue: 05-2023 
DOI 10.17605/OSF.IO/KN46A 
 

May 2023 | 52  

2. RELATED WORKS 

PCALIP is an NP-hard combinatorial optimization problem. It is simulated (in this 
paper), as the Precedence Constrained Knapsack Problem (abbreviated to PCKP), as 
illustrated in the previous section. Therefore, the solution procedures dedicated for 
solving PCKP are also suitable for optimizing the PCALIP (Kellerer et al., 2013). 

The literature does, however, include solution strategies that are either accurate or 
approximatively. Boland et al., in (Boland, et al., 2012) presented an exact method 
based on clique inequalities for determinng facets of the PCKP polyhedron. Significant 
reductions in branch-and-bound nodes and overall solution time were achieved by 
adding these inequalities at the root node. Samphaiboon and Yamada in (Samphaiboon 
& Yamada, 2000) present exact and approximate methods. They present dynamic 
programming algorithms as well as preprocessing method to solve PCKP. The dynamic 
programming can solve small PCKPs instances to optimiality, while by using the 
preprocessing method they were able to solve the problem with up to 2000 items in few 
minutes. You and Yamada in (You & Yamada, 2007) present a pegging approach 
based on Lagrangian relaxation followed by a pegging test. This approach is an exact 
method where the size of the original problem is reduced to be solved within few 
minutes. Maiti et al., in (Maiti et al., 2021) presented a specific breakpoint algorithm, 
which can search appropriate breakpoints of parametric maximum flow related 
problems. The algorithm is used to solve lagrangian relaxed PCKP as well as linear 
programming relaxed PCKP in mine pushback design. Then, topo sort is used to 
produce feasible solutions. In this paper, an iterative three-stages neighborhood search 
is proposed for optimizing the PCALIP. The first stage serves to construct a feasible 
solution. The second stage applies local search procedures to enhance the current 
soltion. Third stage serves to diversify the search space by using a random 
neighborhood destroying strategy. 
 
3. AN ITERATIVE THREE-STAGE RESOLUTION SEARCH  

Neighborhood search methods have already been proven their effecency in developing 
efficient algorithms to approximate large-scale combinatorial optimization problems 
(Aarts & Lenstra, 2018). In this paper, a collection of such techniques have been used 
to optimize the PCALIP. This section presents the main stpes of the proposed solution 
procedure, which can be viewed as an iterative three-stage neighborhood search. The 
first stage tries to construct a feasible solution by applying a greedy method. Such a 
stage construct a solution by solving 0-1 knapsack problem with the precedence 
constraints. The second stage applies local search in order to improve the solution at 
hand. Such a stage can be viewed as an intesification stage because it tries to enhance 
the solutions by applying an exchange technque, where some items are removed to add 
others. Third stage applies a random destroying strategy by removeing a rather large 
percentage of items from the current soltuion and degrading it. This stage can be viewd 
as a diversification stage in order to diversify the search process. The above three 
stages are iteratived until satisfying a stopping condition. 
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3.1 First stage to construct a feasible solution  

This section demonstrates how to identify a PCALIP solution that is viable. Indeed, the 
main purpose of the first stage is to construct fast solution, for this reason, among 
heuristics solution procedures, a greedy procedure is the most suitable choice.  Greedy 
solution procedures can construct a quick fix that is implemented piece by piece and 
prioritizes an immediate improvement above consequences (Hifi, et al., 2015). In 
general, this type of neighborhood search technique does not ensure the optimality of 
the solutions, but it is very fast for determining feasible solutions (Ausiello, et al. 2012). 
Algorithm 1 illustrates the first stage of the proposed solution procedure for solving 
PCALIP, where a greedy method is considered. This algorithm is used, mainly, for two 
aims: (i) to determine a starting solution, and (ii) to complete a destroyed solution 
obtained from stage 3 (as explained later in section 3.3). In both cases, it yields a fast 
feasible solution of PCALIP.  

The major steps of the proposed greedy strategy are illustrated in Algorithm 1, in which 
a workable solution is pieced together successively. It start by initialization the 
problem . Step 3 defines a decision variable , this variable determine whether 

the  is selected or not in the solution. This means that, if , the  is 

placed in the knapsack, while if , the corresponding item is not selected in the 

solution, i.e., doesn’t placed in the knapsack. Steps 4-11 represents the main loop of 
the procedure. In this loop, each  is selected in a sequentially manner under the 

following condition: if it is free, i.e., . Steps 6-7 ensure that, before putting any 

item in the knapsack, all its precedence must be selected in the solution, i.e., 
their . Otherwise, stop and try other . In all cases, before selecting any 

item in the solution, the knapsack constraint is checked (see step 5).  

Algorithm 1: A feasible solution construction of PCALIP 

Input: , an instance of the problem 

Output: , a feasible solution 

1:  Initialize ,  

2:  Let i be the total number of items 

3:  Let  be the decision variables of ith items. 

4:  While     

5: While (    &&   the knapsack constraint is not violated) 

6:      Set  of all the precedence of   

7:    Set  of the  

8:    Update the solution  

9:  End While 

10:  
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11: End While 

12: return   

3.2 Second stage: local search to find the local optima solution 

This section shows how the solution at hand can be enhanced. The main purpose of 
this stage is to improve the quality of the solution obtained from the first stage. 
Therefore, a local search method is proposed as an intesification procedure to enhance 
the solution at hand, and trying to find the local optimum solution (Hifi et al., 2015). The 
proposed method belongs to neighborhood search methods, which can be viewed as a 
variant of an exchange technique, where some items are removed from the solution to 
add others (Aarts & Lenstra, 2018).  

Algorithm 2 presents the second stage where a local search procedure is proposed to 
enhance the current solution. 

Algorithm 2: local search method to enhance the solution 

Input: , a feasible solution obtained from Algorithm 1 

Output:  an enhanced solution 

1: Let i be the total number of items 

2: let  be a reduced problem 

3: let  of  (i.e., remove  of items from the current solution) 

4: While   

5:  Remove  from  

6:  Remove all the successors of   

7:  Update the reduce problem  

8:   

9: End While 

10: While  

11: If  && the knapsack constraint is not violated  

12:  Add the precedencies of  in  

13:  Add  in  

14:  Update  

15: End If 

16:  

17: End While 

18: Return  



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN：1671-5497 

E-Publication: Online Open Access 
Vol: 42 Issue: 05-2023 
DOI 10.17605/OSF.IO/KN46A 
 

May 2023 | 55  

Algorithm 2 illustrates the main steps of the proposed local search method. The 
algorithm start with a solution obtained from Algorithm 1 and tries to enhance it. Steps 
4-17 illustrates the main loops in the algorithm. The main idea is that, remove randomly 
5% of items from the solution obtained from Algorithm 1 (see steps 4-9), then try to add 
other items considering the knapsack and precedence constraints (see steps 10-17). 
This process continues for all not selected items (i.e., ).  

3.3 Third stage: random destroying strategy to diversify the solution space  

This section shows how the search process can be diversified in order to escape from a 
series of local optimum solutions. For this, a random destroying strategy is proposed as 
a diversification procedure. This strategy tries to explore randomly the sub-solution 
spaces aiming to find the best local solution (Hifi et al., 2014). 

Algorithm 3 illustrates the third stage where a random destroying strategy is proposed to 
diversify the solution search space. 

Algorithm 3: random destroying strategy to diversify the solution search space 

Input : , an enhanced solution obtained from stage 2 

Output:  a destroyed solution 

1: let  be a number of items to be removed from a solution 

2: While  

3: select an  randomly from the current solution 

4:        ; to remove  from the solution 

5:    Update the destroyed solution  

6:     

7: End While 

Return  

Algorithm 3 shows the main steps of the proposed diversification strategy. The 
algorithm start with the solution obtained from stage 2 and tries to diversify the search 
process by applying a random destroying procedure. Steps 2-7 shows the main steps in 
this algorithm. The idea is that, destroy the current solution obtained from stage two by 

removing  of its items (see steps 3-5). The destroyed solution ) is then go 

back to algorithm 1 in order to be completed and provide another feasible solution. This 
process is iterated until satisfying a stopping condition.  

3.4 Overall Algorithm  

This section illustrates the overall algorithm proposed in this work: an iterated three-
stage neighborhood search for Solving PCALIP. 
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Algorithm 4 presents the main steps of the overall algorithm. Steps 1-6 shows the main 
loop, where the three stages are iterated until satisfying the stopping condition. Herein, 
the stopping condition considered is the number of iterations. 

Algorithm 4: an iterative three-stage neighborhood search 

Input : , an instance of the problem 

Output: , the best local solution obtained 

1: While stopping criteria is not satisfied 

2:   Apply Algorithm 1 to determine a feasible solution  

3:  Apply Algorithm 2 to enhance the solution solution  

4:   Apply Algorithm 3 to diversify the search process  

5:   Update  the best solution found 

6: End While  

Return  

 
4. COMPUTATIONAL RESULTS 

This section investigates the effectiveness of the proposed Iterative three-stage 
Resolution Search (abbreviated to IRSPC) on an instance consists of 1000 items with 
55 pairs of precedence relations, which has been generated randomly by using a 
special program. The algorithm IRSPC was coded in C++ on a computer with Pentium 
Core i5 CPU at 2.5 GHz. 

First step in the computational results investigates the performance of a greedy 
procedure for solving the PCALIP (Algorithm 1). Recall that, (see Section 3.1), the 
purpose of this algorithm is to produce a fast feasible solution. This has been achieved 
as illustrated in Table 1. The algorithm yields an objective value equals to 226362 within 
0.015 second. 

Table 1: The performance of greedy procedure (Algorithm 1) 

Greedy algorithm 

Objective value 226362 

Time (s) 0.015 s 

Second step in the computational results valuates the effectiveness of the local search 
procedure, illustrated in Algorithm 2, to enhance the solution at hand. In fact, the 
proposed algorithm works as an intesification procedure to enhance the solution within 
short time, by removing 5% of items from it, and add others. This has been achieved as 
shown in Table 2, where the objective value has been enhanced from 226362 to 
271224 within 0.047s. 
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Table 2: The performance of the local search procedure (Algorithm 2) 

 Greedy Local search procedure 

Objective value 226362 271224 

Time (s) 0.015 s 0.047s 

Third step in the computational results investigates the performance of the random 
destroying strategy, presented in Algorithm 3. In this algorithm,  of items are 
removed randomly from the solution obtained from Algorithm 2, in order to degrade it 
and escape to other sub solution space. This degradation diversifies the search process 
and drives the solution procedure to explore randomly a series of solution sub-spaces, 
trying to escape from a series of local optimum solutions. The destroyed solution is, 
then, reconstructed again by using Algorithm 1 and 2. The IRSPC is iterated until 
satisfying the stopping condition. Herein, the stopping condition is the number of 
iterations (see Algorithm 4). However, in order to evaluate the performance of IRSPC 
two criteria have been considered: (i) the ; percentage of the removed items, (ii) the 
total number of iterations. 

Table 3 illustrates the performance of IRSPC when the number of iterations is fixed to 
200 iterations, while,  is ranged according to the following, , , , 
and . 

Table 3: The performance of the IRSPC with the variation of  

    
     

Solution 338882 345898 342046 335164 

Time (s) 12.316 s 14.83 20.18s 21.64 

Table 3 shows the objective values and the solution times reached by the IRSPC. One 
can observed that, the best solution can be obtained with . Moreover, the 
solution time is increase with the increasing of . So, for the next step of the 
computational results, the  is fixed to 20%, while the number of iterations are ranged 
as follows: , 200, 300, and 400 iterations.  

Table 4: The performance of the IRSPC with the variation of iterations 

     

No. of iterations     

Solution 345378 345912 346178 346432 

Time (s) 7.8 s 14.21 s 21.37 s 31 s 

Table 4 illustrates the performance of IRSPC when  is fixed to 20% and the number of 
iterations are varied. As it is clear that, the quality of solutions increased with the 
increasing of iterations, meanwhile the required solution times are increased. For 400 
iterations, the algorithm yields best solutions within 31 seconds. In fact, the quality of 
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solutions has priority, therefore the algorithm was tuned to 400 iterations for the next 
step of the computational results. 

Table 5 shows the performance of IRSPC with compare with the greedy algorithm 
(Algorithm 1), and the local search procedure (Algorithm 2). 

Table 5: The performance of IRSPC with compare with greedy and the local 
search 

 Greedy local search procedure IRSPC 

Solution 226362 271224 346432 

Time (s) 0.015 s 0.047s 31 s 

From Table 5, one can observed that, the performance of IRSPC for solving the 
considered problem is better than the both: greedy (Algorithm 1) and the local search 
(Algorithm 2). IRSPC produces high quality solution of 346432, while the greedy and the 
local search produce 226362 and 271224 respectively. Although, the required solution 
time for IRSPC is much more than those needed by the both algorithms. The IRSPC 
required about 31 seconds to produce its output, while the other algorithms, yield their 
outputs in 0.015, and 0.047 seconds respectively. 
 
5. CONCLUSIONS 

In this paper, a heuristic approach is proposed for solving a real-life situation with 
precedence constraints in agricultural land investment problem. The contribution in this 
work are that: first, the tackled problem has been simulated as a combinatorial 
optimization problem known as PCKP. Second, a mathematical representation model 
was proposed to represent the problem. Third and last, an iterative three-stage 
neighborhood search heuristic is proposed for solving the considered problem. The 
proposed solution method consists of three stages. First stage yields a feasible solution 
by using a greedy procedure. The greedy algorithm yields a fast solution of moderate 
quality. Second stage improves the solution at hand by using a local search method. 
The local search solution procedure improves the solution at hand but, it falls in a local 
optimum solution. Third and last stage, diversifies the solution search space by using a 
random neighborhood search technique. This technique proved its efficiency in 
escaping from a series of local optimum solutions. The three stages were iterated 
searching for the best local solution. The computational results show the effectiveness 
of the proposed heuristic algorithm for producing solutions of high quality in acceptable 
running time.  
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