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Abstract 

The most difficult and critical part of graphical user interface testing is to detect the graphical component 
of a graphical user interface. To conduct GUI testing or reverse engineering for the GUI interface, the first 
step is to detect the classes of GUI elements and their exact positions. In this article, we implement a 
web-based tool to implement graphical user interface element detection named GUIDE. This platform 
enables its users to detect the classes of graphical user interface testing along with their exact positions 
by following a very simple series of steps. To deal with complex and diverse images, this toolkit uses a 
combination of both traditional computer vision methods and models of deep learning. Moreover, to 
produce an accurate result, this toolkit also has a unique method. It also provides the facility of the 
dashboard where users can edit or change the results of testing. It also facilitates its user to export GUI 
classes and images in the form of design files. These files can be further modified in graphical design 
tools like Photoshop. Overall, this toolkit provides accurate detection and is best to utilize in stream 
works. 

Keywords: GUI, Deep Learning, UI Elements, Testing, Element Detection, GUIDE 
 

1. INTRODUCTION 

You can see data and interact with apps through the use of widgets, graphics, and text 
when you have a graphical user interface (GUI). Creating a good user interface may be 
difficult at times, but it is really necessary. Work that is labor-intensive and repetitive 
includes tasks such as testing user interfaces and implementing programs that use a 
graphical user interface (GUI). Research on GUI automation and testing is now being 
conducted, and continual efforts are being made to expedite the development process 
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and lighten the load placed on engineers [1]. For this job, you must be familiar with the 
various GUI components. It is possible to locate GUI components using either the 
instrument-based method or the photo-based method, both of which are distinct from 
one another. Access to the backend system is necessary for the execution of intrusive 
scripts that are employed by instrumentation-based approaches. However, if you do not 
have access to the source code, it is time-consuming to write scripts for them, and it is 
tough to work with them [2].  

Image-based techniques, on the other hand, need only a picture of a graphical user 
interface (GUI) to determine which elements of the GUI it is. This makes image-based 
techniques more comprehensive and less invasive. We are not aware of any 
straightforward and dependable way that users can use to gain knowledge regarding 
GUI components. We developed web-based, interactive computer vision tools known as 
Graphical User Interface Element Detection to easily detect and manage GUI elements 
in GUI images [3]. These tools fall under the category of computer vision (GUIDE). 
Users can recognize graphical user interface features by uploading their images into the 
straightforward web application known as GUIDE and receiving accurate results. 
Finding your way through graphical user interface pictures is a lot like looking for things 
in the real world. The process involves assigning a category to an item that may be 
observed in a digital photograph or video that was captured against a natural 
background [4]. Similarly, our GUI element identification engine can examine a GUI 
picture such as a screenshot or a design sketch to recognize and retrieve GUI widgets, 
images, and text. GUIDE utilizes a total of five cutting-edge algorithms, three of which 
are deep learning methods, and two computer vision approaches that have since been 
rendered obsolete (Faster-RCNN, Yolo v, CenterNet). On the other hand, graphical user 
interfaces frequently contain a large number of scenes, objects, and other components 
[4]. Nevertheless, the graphical user interface elements themselves come in a wide 
variety of forms. Due to the aforementioned factors, the aforementioned procedures are 
insufficient for the reasons for which they were developed. As a result, we offer an 
innovative method for recognizing GUI elements by making use of the techniques that 
are often associated with computer vision. Those approaches that make use of text, on 
the one hand, and those that don't, on the other, are the two primary classifications that 
can be applied to the many methodologies [5].  

Image processing techniques such as flood-fill and linked component labeling are 
utilized first when attempting to recognize non-textual things for classification. The 
information is subsequently categorized with the help of a ResNet50 classifier. In 
contrast to previous methods, which used a bottom-up edge/contour aggregation 
method, our approach takes into account the multiple edges, forms, textures, and 
layouts of graphical user interfaces (GUIs). Second, the most cutting-edge deep 
learning EAST scene text model was utilized for the construction of the text components 
[6]. Our method has shown to be the most successful one for recognizing GUI elements 
since it combines cutting-edge and tried-and-true methodologies with a classifier based 
on deep learning. Users can change the output by rearranging the position, size, shape, 
and visibility of the GUIDE parts by using the interactive dashboard that is provided by 
GUIDE. The programmer creates a repository of reusable user interface kits by 
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collecting all of the components that have been discovered. When the user is pleased 
with their edits, they have the option to export both the updated GUI as well as the 
element data related to that GUI from GUIDE (e.g., position, size, class, etc.) [7].  

Two methods that can be used to improve the output are testing using graphical user 
interfaces (GUIs), as well as using software known as UI2CODE, which tries to 
automate GUI design by writing code directly from GUI graphics. This paper makes the 
following contributions, to detect GUI elements, we use our method for finding GUI 
elements and five other methods for finding things, we offer GUIDE, an interactive web 
application that lets users control GUI elements and create outputs for further 
development that can be used again and again, and expert research shows how 
important a reliable GUI element recognition method is. 
 
2. LITERATURE REVIEW 

It is necessary to go through the steps of designing and testing brand-new software 
applications. This, in turn, lowers the possibility that inappropriate behavior would occur, 
which, in turn, raises the bar for productive behavior. It is standard procedure to run 
tests by hand, with a human operator making use of the graphical user interface (GUI) 
(GUI). In this step, testers make use of their experience as well as their instincts to hunt 
for problems. This is a process that is both expensive and time-consuming. It is possible 
to quickly check the application under test (AUT) by executing a large number of test 
cases with the use of test scripts; nonetheless, it is common for hidden flaws to go 
unnoticed. To build useful tests, you need a deep understanding of the underlying 
system as well as strong programming skills. The implementation of these tactics is not 
only difficult and time-demanding, but with each new iteration, they fall farther and 
further behind [1]. 

Academics are interested in model-based testing (MBT) for software-intensive systems, 
but commercial adoption has lagged. Our business partners have noticed MBTs using 
more graphical models. They blame the lack of evidence-based MBT recommendations 
that consider technical and non-technical factors. Since there is no scientific direction, 
this idea is more likely to be accurate. This study consults MBT industry experts to learn 
how to apply graphical modeling to MBT procedures. The findings should inspire 
scholars and practitioners. The research is based on semi-structured in-depth 
interviews with 17 MBT professionals from around the world in various software industry 
professions. Semantic equivalence analysis compiles interview data, which MBT 
specialists with business expertise double-check. Thirteen sets of findings generate 
twenty-three recommendations for accepting, using, and quitting a strategy. We 
evaluate why the industry hasn't widely adopted MBT with graphical models using 
factual evidence and industry experts' viewpoints. After reviewing the results, you will 
receive structure and approach remarks. A business needs structure, mission, 
knowledge, and resources to implement a technique. This study advances the state of 
the art and helps experts employ graphical models to improve MBT effectiveness [2]. It 
is the responsibility of the users to notify the developers of any issues with the product 
as soon as they become aware of them. In contrast, non-technical users frequently lack 
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the terminology required to provide good defect descriptions. [Citation needed] [Citation 
needed] Screen recordings are gaining popularity as a method of bug reporting due to 
their ease of use and the fact that they provide step-by-step instructions on how to 
duplicate the issue being reported. Despite the length of the tape and the haziness of 
the movements, the developers are still having a difficult time and spending a lot of time 
trying to find out how to make the problem happen again. We advise using GIFdroid as 
a quick remedy rather than manually generating the execution trace from visual bug 
reports. This will save a significant amount of time. GIFdroid uses image processing to 
extract key frames from the recording and then maps those key frames to states in the 
GUI Transitions Graph to establish which state was the cause of the problem. This 
allows GIFdroid to determine which state was the cause of the problem. Both 
automated and human testing have demonstrated that the procedure is accurate, 
useful, and effective in achieving its intended results [3]. 

Automated software testing makes meeting delivery deadlines easier. CI/CD pipelines 
have made automation solutions less useful. The testing business is considering 
artificial intelligence to stay pace with technological advancement. We investigate how 
transformers can generate test cases from UI element descriptions. This replaces 
manually extracting test cases from the test specification paper. The proposed strategy 
can also enhance failed testing. We use EfficientDet and Detection Transformer to find 
things in an application's user interface. Thus, a tester need not actively search for 
perfectly created user interface pieces. Tesseract automatically identifies UI component 
text. GPT-2 and T5, among others, translate UI element descriptions into test cases. 
Test scripts are created from test cases using a simple parser. This case study uses 
thirty online buying sites. Detection Transformer and EfficientDet create 98.08 and 
93.82 percent valid, executable test cases, respectively. The framework reduced app 
instability by 96.05% across all test apps. The suggested strategy will improve industry-
standard automation tools' test case generation and test improvement. [4]. 

Quality-of-Experience (QoE) is a metric that every mobile network provider is required 
to track, and it is measured concerning established Quality-of-Service criteria. User 
feedback on numerous stimuli or variable-processed sources serves as the foundation 
for subjective quality-of-experience assessment methodologies such as the Multi-
Stimulus test with Hidden Reference and Anchor, or MUSHRA, and the Subjective 
Assessment Methodology for Video Quality (SAMVIQ). The process of producing stimuli 
that are following a set quality of service standard is labor- and time-intensive, but it is 
vital for determining the level of quality of the user experience provided by an 
application. In light of this, we propose a fresh method, one that is driven by the 
participation of the community, for the creation of stimuli for measuring the level of 
experience provided by mobile apps. It does this by autonomously manipulating the 
user interface of a real-world mobile device and monitoring the activities of the device 
through a network. This is done to produce the proper stimulus. The article begins with 
an explanation of the framework, continues with a discussion of its open-source 
implementation, and comes to a close with a concise summary of the framework 
concerning several different kinds of mobile applications [5]. 
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The production of iron in a blast furnace is strongly reliant on continuous quality control 
as well as inspections of the smelting condition. A critical phase involves utilizing data-
driven models to make predictions about molten iron quality (MIQ) indices. 
Nevertheless, the MIQ forecast must still overcome a few obstacles: It is challenging to 
get a hold on data-driven models since there is a high demand for labeled samples, 
there hasn't been enough research done on the links between MIQ indices, and there is 
a dearth of individuals who are skilled in the nonlinear and dynamic description. Our 
original, data-driven, and deep model for online prediction of MIQ indicators is shown 
here. To get started, we create a focus-splitting module that will enable individual inquiry 
into the dynamic and nonlinear connection that exists between process variables and 
prediction targets. To achieve superior weights and rely less on labeled samples, the 
attention-wise deep network is pertained using the granular molten iron temperature 
(MIT) data obtained by our custom-built apparatus. This is done to produce accurate 
results. The capabilities of the model are then increased by adding a framework to it. 
This framework includes a weighted attention-wise module as well as task-separate 
prediction networks. This is done to examine the dynamic interplay that exists between 
the many different sorts of prediction. We gave the suggested attention-wise deep 
network a workout at a commercial iron foundry to test its capabilities. The results are 
now substantially more accurate and easy to understand than they were previously [13]. 

The fact that mobile computing is undergoing development and the market requires new 
products to satisfy the requirements of an increasing number of customers highlights 
the significance of assuring the quality of mobile applications. Testing of graphical user 
interfaces (GUIs) is now the subject of research that has just begun. According to the 
findings of recent studies, it is still difficult to acquire an exhaustive list of operations, 
transitions, functionality coverage, and reproduction failures. Deep-GUIT is a tool that is 
built on a Deep Q-Network, and the authors of this study recommend utilizing it to build 
test cases for Android mobile apps in a way that encourages discovery through the use 
of code coverage and inventive exercises. To evaluate the technology, fifteen mobile 
applications that are freely available to the public were used. Code coverage and failure 
rates were found to be higher and more frequent, respectively, for the new tools Monkey 
(average increase of 61%) and Q-testing (average increase of 47%) [7]. It is critical to 
conduct GUI testing on every piece of GUI software. The quality of software degrades 
as a result of automated GUI testing that is difficult to reuse and cannot be deployed 
portably because it maintains track of coordinates and handles. The lightning-fast rate 
at which graphical user interface (GUI) software develops highlights the pressing need 
for improved testing procedures for GUIs. The testing procedure has the potential to be 
vastly improved and completed much more quickly if automated intelligence is utilized. 
But to test graphical user interfaces, you need to understand how their components 
work. Deep learning is being investigated in this study as a potential method for 
intelligently recognizing graphical user interface (GUI) elements. It not only generates 
datasets that may be used to train a model that is capable of recognizing GUI elements, 
but it also provides instructions for how those elements should be marked up. We train 
a model to recognize GUI elements using the network that we used for object detection, 
and then we discuss the results of this training. The results of the project offer research 
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items and data about the reliability of intelligent systems, in addition to providing 
technical support for testing intelligent graphical user interfaces (GUIs) [8]. 

The software used for aircraft control is, by a significant margin, the most important 
aspect of aviation software. The quality standards are fairly rigorous because any faults 
could put the lives and safety of other people in jeopardy. The process for testing 
software needs to be dependable and effective. Because the conventional techniques of 
testing were insufficient for the flight control software, automation testing has gradually 
replaced the traditional ways as the major means of checking the program. This is 
because traditional testing methods were inadequate. Locating and comprehending the 
operation of GUI widgets on software screenshots presents the greatest challenge 
when it comes to automating the testing of aircraft control software. This has an 
immediate and significant bearing on the validity of the examination. To determine the 
likeness of the widget contained within the screenshots that were taken, we make use 
of picture recognition and matching techniques. When we take a picture of the widget, 
we then feed that picture into a convolutional neural network so that we can extract 
relevant visual information from it. After that, we make use of the encoder component so 
that the features can be transformed into a tensor. The encoded input, the tensor, and 
the result of the module that came before the decoder is the three components that are 
utilized in the construction of a word sequence by the decoder module. In addition to 
this, we carry out an experiment to determine how effective the process of identifying 
widgets and creating goals is. In most cases, the IOU for the identification of widgets 
was 0.81. To generate widget intent, our BLEU-1 model has a score of 0.567, BLEU-2 
has a score of 0.356, BLEU-3 has a score of 0.261, and BLEU-4 has a score of 0.131. 
These data provide evidence that our existing strategy is both effective and efficient 
[16]. 
 
3.  DETECTION METHODS 

Alongside the deep learning models that were created on images of mobile GUI, 
existing, conventional computer vision-based methodology was utilized in GUIDE. 
GUIDE stands for graphical user interface design element toolkit is proposed to detect 
GUI elements or components on a user interface more efficiently and in less time than 
any other tool. Traditional computer vision systems do not make use of machine 
learning to improve their performance. Instead, analysis is done on a pixel-by-pixel 
basis. Because they call for relatively little in the way of training, they may be easily 
modified and put into place with minimal effort [17]. We make advantage of two of the 
most popular GUI detection methods available: Xianyu and REMAUI. The most recent 
methods for doing this task are the following: Faster-RCNN (two stages), Yolo v3 (one 
stage), and Center-Net. Made an effort to get retrained and enroll in the GUIDE 
program (anchor-free). Deep learning, on the other hand, is particularly effective in 
research involving object identification and may reliably anticipate future outcomes while 
operating at a high rate. Please keep in mind that for our deep learning models to 
recognize graphical user interface (GUI) elements, we retrained them using the Rico 
dataset of mobile app screenshots. This is very important [18]. 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN：1671-5497 

E-Publication: Online Open Access 
Vol: 42 Issue: 04-2023 
DOI 10.17605/OSF.IO/2XBPZ 
 

April 2023 | 61  

a) REMAUI: It is a piece of software that can "reverse engineer" user interfaces for 
various applications. The methods for image processing that are already 
incorporated into Open=CV are used to process photographs of mobile user 
interfaces. It uses a bottom-up technique to determine which GUI components are 
not textual. It starts by putting together individual items from the most fundamental 
visual regions by employing a technique called canny edge detection (such as 
edges and contours). Tesseract is a straightforward tool that locates text in GUIs by 
utilizing- optical character recognition (OCR) [19]. 

b) Xianyu: Alibaba has developed one more GUI reverse engineering project, which 
translates GUI picture files into code. This project focuses on the user interface. It 
adheres to the fundamental principles of REMAUI. It uses a technique known as 
"flood fill" to discover regions that are contextually significant while simultaneously 
reducing noise that is not related to the context. This helps it detect non-textual 
elements more accurately. After that, the user interface components are made by 
repeatedly cutting in both directions. Tesseract's ability to search for text in 
graphical user interfaces is another one of its many applications [20]. 

c) Faster-RCNN: It is a standard "two-stage" approach that consists of two phases: 
"stage one," in which the things to be located are categorized, and "stage two," in 
which the items themselves are located. The first step in the procedure is to create 
an area proposal network, which is responsible for compiling a list of regions that 
have a high probability of being suitable locations for item placement (RPN). RPN 
will compare a given box to a set of anchor boxes whose aspect ratios are already 
known to identify whether or not a particular box includes an object. To determine 
the bounding box of an object, the anchor boxes must first be inverted. After that, a 
convolutional neural network (CNN) image classifier is used to the data to sort the 
items into the appropriate categories [21].  

d) Yolo v3: In contrast to Faster-RCNN, YOLO is capable of simultaneously doing 
object categorization and region regression. It does this by first clustering the 
ground truth in the training dataset, and then automatically calculate the aspect ratio 
of the anchor boxes. CNN is used to produce a gridding feature map as well as 
bounding boxes for each grid. After that, YOLO does a regression based on the 
box's coordinates to locate the object inside the box while simultaneously 
calculating the scores for the box without the object [22]. 

e) Center-Net: Yolo and Faster-RCNN both make use of anchor boxes to locate 
targets; however, the efficiency of the former is contingent on the latter's ratio of 
anchor boxes to targets. In addition, everything that cannot be contained within 
these cages will be of little service in the battle against them. By utilizing a method 
that does not count on anchors, Center-Net can get around these constraints that 
otherwise would be in place. It is a straightforward approach to locating the 
geometric center of an item, in addition to its upper- and lower-left, and lower-right 
extremities [23]. 
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4. HYBRID APPROACH 

In this paper, we describe a novel technique for the recognition of GUI objects that 
takes into account the graphical representation of the GUI. We divide detection into two 
stages: the first stage involves locating text, while the second stage looks for non-text 
elements. Traditional computer vision methods are used to delete portions of a picture 
that do not include text, while deep learning models are utilized to classify and locate 
text within the image [24]. Because of this combination, it is much simpler to recognize 
non-text things without interrupting text, and state-of-the-art performance may be 
reached while identifying GUI elements. This is a significant improvement over the 
previous method. The steps involved in our methodology are outlined in Figure 1. The 
Detection and Identification of User Interface Elements Other than text, because it 
analyses images on a pixel-by-pixel basis, the traditional computer vision method is 
superior to deep learning models when it comes to determining the location and shape 
of objects. Deep learning models rely on statistical regression to create approximations 
of bounding boxes [25]. 

The traditional computer vision method examines images at the level of individual 
pixels. The bottom-up method, on the other hand, is frequently utilized by antiquated 
methods to give things finer characteristics (such as edges or contours). This method 
has the propensity to separate GUI elements an excessive amount, which might result 
in visual noise when used on GUIs with elaborate backgrounds. Because of this, we 
make use of traditional methods of computer vision to provide a top-down, coarse-to-
fine approach to recognizing non-textual graphical user interface (GUI) elements [26]. 
There are three separate steps involved in the technique. In this approach, the method 
for locating layout blocks and generating their perimeters uses Sklansky's algorithm as 
well as the flood-filling methodology. Figure 1 illustrates one example of this kind of 
block map. On this particular map, the different colored areas reflect different possible 
configurations of the various blocks [27]. 

 

Figure 1: UI Element Detection 
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After that, a shape recognition technique is used to locate and count rectangles so that 
they can be used as GUI layout blocks. Second, the procedure generates a binary map 
by combining the gradient map obtained from the user interface with a straightforward 
banalization technique [28]. This combination produces an accurate result. If it doesn't 
stand out too much from its neighbors, a pixel is considered to be part of the backdrop 
and is represented by the color black. If there is a significant amount of contrast, the 
pixel in question will be considered to be in the foreground and will be shown as white. 
As can be seen in Figure 1, the newly discovered blocks are put to use in the process of 
breaking the binary map up into more manageable portions [14]. 

We make use of the approach known as linked component labeling to locate GUI 
elements within each block binary map. After that, we use Sklansky's method to identify 
the limits of each component by applying them to the data. To classify the data, we 
used a ResNet 50 classifier and fed it 90,000 examples of GUI elements drawn from 15 
distinct categories during the training phase. A graphical user interface is used to 
search for elements that are contained inside the text [29]. Because the text that 
appears in a GUI is regarded to be scene text, we apply a cutting-edge deep learning 
scene test detector called EAST to locate the text that appears in a GUI image. The first 
thing that happens is that an input image is given to a feature pyramid network to 
process. Based on the final feature map, six values are computed for each point. These 
values include the objectless score, as well as the top, left, bottom, and right offsets and 
the rotation angle [30]. 
 
5.  IMPLEMENTATION 

The GUIDE toolkit is a web-based program that makes it easier to locate and update 
graphical user interface (GUI) components in photographs. The findings of the detection 
can be exported to other programs so that they can be used in subsequent applications, 
such as GUI testing or GUI automation. GUIDE employs a variety of computer vision 
methods, including deep learning as well as more standard approaches. They are 
provided with an intuitive dashboard that enables them to monitor and adjust the 
detection results as required [31]. Tensor-flow and Pytorch are utilized for the 
development of specialized deep learning models, whereas Open-CV serves as the 
basis for both Xianyu and our technique. The landing page and the dashboard are the 
two parts of the GUIDE that are considered to be the most important. Homepage for the 
Release of Figure 2(a) presents a portion of our website's homepage that may be 
accessed by clicking on the link. This portion of the homepage contains brief 
instructions on how to use the website as well as links to relevant resources. End users 
can edit user-generated material that is displayed in the form of graphical user interface 
graphics [32].  

Users have the option of using one of the example GUIs that we give or sending us their 
customized interfaces to obtain a better understanding of how detection is performed 
and how the dashboard is utilized in its most basic form. In addition, we present the 
user with a set of sliders that may be modified to modify a few important elements that 
influence the ultimate result of the detection. These factors are what we refer to as "key 
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factors." We use an approach called "Google's Protocol Buffers serializing structured 
data" to encode the image so that it can be sent across the server. This allows us to 
send the image without any problems. The detection result is used by Dashboard 
GUIDE to partition the input GUI into repositionable GUI components, as seen in Figure 
2(b). We included functions like drag-and-drop on the dashboard so that it would be 
easier for users to communicate with one another. The user can change the detection 
result by simply relocating the graphical user interface (GUI) widget [33].  

Indicators of Management's Highest Priorities When the user selects a particular object 
and clicks on it, the features of that item will immediately become apparent (e.g., type, 
width, height, left, top). You can quickly modify the size of a piece, move it, as well as 
delete and undo any prior adjustments. UI Element Toolkit: Utilizing a UI kit to construct 
a user interface is both the most time-effective and cost-effective approach to doing so.  

The user's discoveries are saved in the dataset for future use and are credited to the 
individual who made them. If the user wants to enhance the functionality of the input 
GUI, more GUI components are accessible in the UI kits that come with the software. 
The results obtained from Export-Smuggling Investigations When the picture editing 
process is finished, the user has the option of exporting the updated position, 
dimensions, and type of each GUI element. The information will be kept in a JSON file 
that is both readable by machines and accessible to a large number of people. 

 

Figure 2: (a) Landing Page 
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Figure 2: (b) Dashboard 
 

6. EVALUATION 

The goal of our study is to evaluate graphical user interface element detection 
according to (i) how well it can identify objects and (ii) how well it can be used in 
subsequent tasks. 

a) Usability  

We asked ten people who have significant experience in the domains of 
development and academics and have worked on GUI-related projects for their 
thoughts on the UIED so that we may have a better understanding of it. They are 
tasked with utilizing UIED and are afterward polled regarding its value to them and 
their jobs as well as its potential for further advancement. To "reverse engineer" 
the graphical user interface (GUI), three of the specialists are currently working on 
the project (UI2Code). They were all of the same minds when it came to the 
necessity of accurate GUI element recognition for efficient programming, but they 
were powerless to do anything about it because they did not have access to 
commercially available detection technologies. At the moment, there are four 
persons working in the same area on research involving the use of robots to do 
automated testing of graphical user interfaces. To avoid needing to build a testing 
script, they aim to test mobile applications with a robot arm that imitates a human 
tester. This will allow them to save time. This is not going to function because 
there is insufficient visual information. According to these researchers, there is not 
yet a mature and accurate domain-specific solution, even though accurate element 
information from GUI element identification is essential to teach the robot tester 
[34-42]. In addition, they believed that a straightforward application such as GUIDE 
was "very advantageous." 
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b) Effectiveness 

We run tests on a dataset of 5000 Android mobile GUIs that we received from Rico 
as part of our investigation into the efficacy of various element recognition 
algorithms. Previous work that we've done on this topic digs into it more 
thoroughly. The F1 score served as our key indicator of performance; it is a metric 
that is comprised of a weighted average of accuracy and recall. The accuracy of 
the measurements can be determined by determining whether or not the area 
under the curve (AoC) between the detected bounding box and the ground-truth 
box is greater than 0.90. To demonstrate the value of each strategy, we determine 
how long it will take to put it into action. Table 1 contains a summary of all the 
information gathered through the various methods. When it comes to detecting 
objects with deep learning models, the performance of Faster RCNN F1=0.271, 
YOLOv3 F1=0.249, and Center-Net F1=0.282 is superior to that of REMAUI 
F1=0.183 and Xianyu F1=0.106. The most recent findings (F1=0.524) demonstrate 
that our methodology is effective. The incompleteness of the dataset is one factor 
that can help to explain the unsatisfactory result. Because it uses a variety of 
models and gives users the ability to customize them to their preferences, GUIDE 
is capable of producing more accurate detection results. 

 
7.  CONCLUSION AND  FUTURE WORK 

This article is all about GUIDE, a toolkit for recognizing GUI elements that work with 
three popular deep-learning methods and two conventional computer vision methods. 
We also utilize a novel method that combines state-of-the-art GUI text recognition and 
non-text GUI element identification using distinct GUI properties. We can recognize text 
and non-text GUI elements. Our strategy and all user interface customization 
parameters are in GUIDE. GUIDE's user-tailored interface includes drag-and-drop, size, 
and class editors to improve detection. GUIDE accesses this interface. After that, the 
new GUI picture and data can be extracted and reused. GUIDE's detection accuracy 
and efficacy were assessed. GUIDE is a solid starting point for developing a GUI-based 
toolkit, according to the research. GUIDE's adaptability makes it fascinating. The 
UI2CODE project generates code from GUI images. This technique will help graphical 
user interface (GUI) designers enter their GUI designs and return the working code. In 
the future, GUIDE will be used for the detecting phase of automatic GUI testing. 
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