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Abstract 

The purpose of this work is to search for an approximate solution to the Fredholm and Volterra integro-
differential equations using Genocchi polynomials, replacing the initial conditions if necessary, where the 
integrals can be calculated using numerical methods, in order to obtain a variation problem and reduce it 
to a linear system, where its solution is to find the coefficients of the function. Unknowns and then solve the 
equation. The convergence and effectiveness of this method are confirmed by numerical examples that will 
be presented. 
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1. INTRODUCTION 

Integro-differential equations are considered one of the most important fields in 
mathematical disciplines, for example pure mathematics and applied mathematics. 
Integro-differential equations have a very important role in modern science and 
technology such as heat transfer, diffusion processes, mechanics, biological species, and 
many other fields. To learn more about the sources in which these types of equations are 
studied in applications of physics, biology, and engineering, as well as in books on 
advanced integral equations. References can be found [4, 10, 11, 15]. 

The numerical solution of second order integro-differential equations with the boundary 
conditions of the Fredholm and Volterra equations and other equations related to this type 
of equations has been done by some authors.  

For example, the authors in [4] discussed the Chebyshev Collocation Method for the 
Solution of Linear Integro-Differential Equations, which is the compact finite difference 
method, and the monotonic iterative sequence method for solving the second order 
Volterra integro-differential equation was implemented in [27,5]. However, a sequential 
solution of second order integro-differential equations with boundary conditions of 
Fredholm and Volterra types by the homotopy analysis method was also considered in 
[16]. 

Accordingly, this work aims to find approximate solutions to Fredholm and Volterra linear 
integro-differential equations of the second type using polynomials of the Genocchi type 
with the Galerkin method and then compare the approximate solutions with the exact 
solutions to see the effectiveness of the method through the examples that we will 
present. 
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2. GENOCCHI GALERKIN METHOD FOR IDE 

Consider the following Volterra integro-differential equation 

 𝑢′(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)
𝑥

𝑎
𝑑𝑡                                                                       (1) 

𝑢(𝑎) =∝                                                                                                            (2) 

Where 𝑓(𝑥) and 𝑘(𝑥, 𝑡) are known functions, and 𝑢(𝑥) is the unknown function that must 
be determined. 

The method under study uses Genocchi polynomials, well addressed in, [12,22,14,13]. 

As a basis polynomial to approximate the solution on a closed finite interval. Assume that 

𝑢(𝑥) = 𝑢𝑛(𝑥) = ∑ 𝛽𝑖
𝑛
𝑖=0 𝐺𝑖(𝑥) = ∑ 𝛽𝑖

𝑛
𝑖=0 𝐺𝑖 (

𝑥−𝑎

𝑏−𝑎
)                                                 (3) 

Where 𝐺𝑖 (
𝑥−𝑎

𝑏−𝑎
) is shifted Genocchi polynomial at [𝑎, 𝑏] 

Note that when we take the value 𝑥 = 𝑎 we get 
𝑥−𝑎

𝑏−𝑎
= 0, and when 𝑥 = 𝑏 we get 

𝑥−𝑎

𝑏−𝑎
= 1. 

So we have  

                         𝑢′(𝑥) = 𝑢𝑛
′ (𝑥) = ∑ (

1

𝑏−𝑎
)𝑛

𝑖=0 𝛽𝑖𝐺𝑖
′ (
𝑥−𝑎

𝑏−𝑎
)                                           (4)  

Substituting (3) and (4) into (1), results in               

∑ (
1

𝑏−𝑎
)𝑛

𝑖=0 𝛽𝑖𝐺𝑖
′ (
𝑥−𝑎

𝑏−𝑎
) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)

𝑥

𝑎
∑ 𝛽𝑖𝐺𝑖 (

𝑡−𝑎

𝑏−𝑎
)𝑛

𝑖=0 𝑑𝑡 = 𝑓(𝑥) +

∑ 𝛽𝑖
𝑛
𝑖=0 ∫ 𝑘(𝑥, 𝑡)𝐺𝑖

𝑥

𝑎
(
𝑡−𝑎

𝑏−𝑎
)𝑑𝑡                                                                                (5) 

To determine unknown coefficients 𝛽𝑖, we use the Galerkin idea by multiplying both sides 

of (5) by 𝐺𝑗 (
𝑡−𝑎

𝑏−𝑎
) and then integrating with respect to 𝑥 from 0 to 1. So we have 

∑ (
1

𝑏−𝑎
)𝑛

𝑖=0 𝛽𝑖 ∫ 𝐺𝑖
′1

0
(
𝑥−𝑎

𝑏−𝑎
)𝐺𝑗 (

𝑥−𝑎

𝑏−𝑎
) 𝑑𝑥 = ∫ 𝑓(𝑥)

1

0
𝐺𝑗 (

𝑥−𝑎

𝑏−𝑎
) 𝑑𝑥 +

∫ [∑ 𝛽𝑖 ∫ 𝑘(𝑥, 𝑡)𝐺𝑖 (
𝑡−𝑎

𝑏−𝑎
) 𝑑𝑡

𝑥

𝑎
𝑛
𝑖=0 ]

1

0
𝐺𝑗 (

𝑥−𝑎

𝑏−𝑎
)𝑑𝑥                                                        (6) 

for = 0,1, … , 𝑛 , or equivalently 

∑ (
1

𝑏−𝑎
)𝛽𝑖

𝑛
𝑖=0 ∫ 𝐺𝑖

′1

0
(
𝑥−𝑎

𝑏−𝑎
)𝐺𝑗 (

𝑥−𝑎

𝑏−𝑎
) 𝑑𝑥 = ∫ 𝑓(𝑥)

1

0
𝐺𝑗 (

𝑥−𝑎

𝑏−𝑎
) 𝑑𝑥 +

∑ 𝛽𝑖
𝑛
𝑖=0 ∫ [∫ 𝑘(𝑥, 𝑡)𝐺𝑖 (

𝑡−𝑎

𝑏−𝑎
) 𝑑𝑡

𝑥

𝑎
]

1

0
𝐺𝑗 (

𝑥−𝑎

𝑏−𝑎
)𝑑𝑥                                                         (7)   

If needed the integrals can be calculated by numerical methods. This procedure 

generates a system of linear equations for the unknown {𝛽0, 𝛽1, … , 𝛽𝑛}. Many researchers 
substitute initial condition 

𝑢(𝑎) =∝ ⇒ ∑ 𝛽𝑖𝐺𝑖
𝑛
𝑖=0 (

𝑎−𝑎

𝑏−𝑎
) = ∑ 𝛽𝑖𝐺𝑖

𝑛
𝑖=0 (0) =∝                                                    (8) 
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for the same number of equations in the foregoing linear system. The unknown 
parameters are determined by solving the system of equations (7) and (8). Substituting 
these values in (3) gives the approximate solution of the integro-differential equation (1). 
 
3. GENOCCHI POLYNOMIALS AND THEIR PROPERTIES 

The classical Genocchi polynomial 𝐺𝑛(𝑥) is usually defined by means of the exponential 
generating functions 

2𝑡𝑒𝑥𝑡

𝑒𝑡 + 1
= ∑𝐺𝑛(𝑥)

+∞

𝑛=0

𝑡𝑛

𝑛!
 

Where 𝐺𝑛(𝑥) is the Genocchi polynomial of degree 𝑛 and is given by 

𝐺𝑛(𝑥)  = ∑(
𝑛
𝑘
)𝐺𝑛−𝑘(𝑥)

𝑛

𝑘=0

𝑥𝑘 

𝐺𝑛−𝑘. Is the Genocchi number. 

Some of the important properties of these polynomials include 

{
  
 

  
 
∫𝐺𝑝(𝑥)𝐺𝑞(𝑥)

1

0

𝑑𝑥 =
2(−1)𝑝𝑝! 𝑞!

(𝑝 + 𝑞)!
𝐺𝑝+𝑞 , 𝑝, 𝑞 ∈ ℕ

∗

𝑑𝐺𝑝(𝑥)

𝑑𝑥
= 𝑛𝐺𝑛−1(𝑥),   𝑝 ∈ ℕ

∗

𝐺𝑝(1) + 𝐺𝑞(0) = 0,   𝑝 ∈ ℕ
∗

 

Noting that, the Genocchi polynomial 𝐺𝑛(𝑥)  is a polynomial with rational coefficients. 

𝐺0(𝑥) = 0, 𝐺1(𝑥) = 1, 𝐺2(𝑥) = 2𝑥 − 1, 𝐺3(𝑥) = 3𝑥
2 − 𝑥, 𝐺4(𝑥) =  4𝑥

3 − 6𝑥2 + 1,…  
 
4. NUMERICAL EXAMPLES 

In this section, we intend to show the efficiency of the Galerkin method for solving 
Fredholm and Volterra integro-differential equations of the second kind by Genocchi 
polynomials by presenting six illustrative examples. The absolute error for this formulation 

is de ned by 𝐸(𝑥) = |𝑢(𝑥) − 𝑢𝑛(𝑥)|. 

Example 1. Let us consider the linear integro-differential equation of Volterra. 

𝑢′(𝑥) = 2 −
𝑥2

4
+
1

4
∫ 𝑢(𝑡)𝑑𝑡
𝑥

0

 

With the initial condition 𝑢(0) = 0 

Where the function 𝑓(𝑥) is chosen such that the exact solution is given by 

𝑢(𝑥) = 2𝑥 
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The approximate solution 𝑢𝑛(𝑥) of 𝑢(𝑥) is obtained by the Galerkin-Genocchi polynomial 
method. 

Table 1: We Present the Exact and Approximate Solutions of the Equation in 
example 1 in Some Arbitrary Points, the error for N=10. 

x exact solution 𝑢 approximate solution 𝑢𝑛 Error 

0.0 0.0000 0.0000 0.000000e+00 

0.1 0.2000 0.2000 0.000000e+00 

0.2 0.4000 0.4000 0.000000e+00 

0.3 0.6000 0.6000 0.000000e+00 

0.4 0.8000 0.8000 0.000000e+00 

0.5 1.0000 1.0000 0.000000e+00 

0.6 1.2000 1.2000 0.000000e+00 

0.7 1.4000 1.4000 0.000000e+00 

0.8 1.6000 1.6000 0.000000e+00 

0.9 1.8000 1.8000 0.000000e+00 

1 2.0000 2.0000 0.000000e+00 

 

Figure 1: Graph for example 1 

Example 2. Let us consider the linear integro-differential equation of Volterra. 

𝑢′(𝑥) = 1 − 2𝑥 sin(𝑥) + ∫ 𝑢(𝑡)
𝑥

0

𝑑𝑡 

With the initial condition 𝑢(0) = 0 

Where the function 𝑓(𝑥) is chosen such that the exact solution is given by 

𝑢(𝑥) = 𝑥 cos(𝑥) 
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The approximate solution 𝑢𝑛(𝑥) of 𝑢(𝑥) is obtained by the Galerkin-Genocchi polynomial 
method. 

Table 2: We Present the Exact and Approximate Solutions of the Equation in 
example 2 in Some Arbitrary Points, the Error for N=9 

x exact solution 𝑢 approximate solution 𝑢𝑛 Error 

0.0 0.0000 0.0000 0.000000e+00 

0.1 0.0995 0.0995 3.500639e-10 

0.2 0.1960 0.1960 4.629055e-10 

0.3 0.2866 0.2866 5.292684e-10 

0.4 0.3684 0.3684 3.588525e-10 

0.5 0.4388 0.4388 4.901383e-10 

0.6 0.4952 0.4952 6.156364e-10 

0.7 0.5354 0.5354 4.568667e-10 

0.8 0.5574 0.5574 5.604863e-10 

0.9 0.5594 0.5594 5.604863e-10 

1 0.5403 0.5403 1.096326e-09 

 

Figure 2: Graph for example 2 

Example 3.  Let us consider the linear integro-differential equation of Fredholm 

𝑢′(𝑥) = 3𝑒3𝑥 −
1

3
(2𝑒3 + 1)𝑥 + ∫ 3𝑥𝑡𝑢(𝑡)

1

0

𝑑𝑡 

With the initial condition 𝑢(0) = 1 

Where the function 𝑓(𝑥) is chosen such that the exact solution is given by 

𝑢(𝑥) = 𝑒3𝑥 
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The approximate solution 𝑢𝑛(𝑥) of 𝑢(𝑥) is obtained by the Galerkin-Genocchi polynomial 
method. 

Table 3: We Present the Exact and Approximate Solutions of the Equation in 
example 3 in Some Arbitrary Points, the Error for N=9 

x exact solution 𝑢 approximate solution 𝑢𝑛 Error 

0.0 1.0000 1.0000 0.000000e+00 

0.1 1.3499 1.3499 4.500060e-06 

0.2 1.8221 1.8221 5.619143e-06 

0.3 2.4596 2.4596 7.016613e-06 

0.4 3.3201 3.3201 5.099747e-06 

0.5 4.4817 4.4817 6.679660e-06 

0.6 6.0496 6.0496 8.956952e-06 

0.7 8.1662 8.1662 7.585738e-06 

0.8 11.0232 11.0232 8.937670e-06 

0.9 14.8797 14.8797 1.159044e-05 

1 20.0855 20.0855 1.697252e-05 

 

Figure 3: Graph for example 3 

Example 4. Let us consider the linear integro-differential equation of Fredholm. 

𝑢′(𝑥) = 3 + 6𝑥 + ∫𝑥𝑡

1

0

𝑢(𝑡)𝑑𝑡 

With the initial condition 𝑢(0) = 0 

Where the function 𝑓(𝑥) is chosen such that the exact solution is given by 

𝑢(𝑥) = 3𝑥 + 4𝑥2 
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The approximate solution 𝑢𝑛(𝑥) of 𝑢(𝑥) is obtained by the Galerkin-Genocchi polynomial 
method. 

Table 4: We Present the Exact and Approximate Solutions of the Equation in 
Example 4 in Some Arbitrary Points, the Error for N=9 

x exact solution 𝑢 approximate solution 𝑢𝑛 Error 

0.0 0.00000 0.00000 0.000000e+00 

0.1 0.34000 0.34000 0.000000e+00 

0.2 0.76000 0.76000 0.000000e+00 

0.3 1.26000 1.26000 0.000000e+00 

0.4 1.84000 1.84000 0.000000e+00 

0.5 2.50000 2.50000 0.000000e+00 

0.6 3.24000 3.24000 0.000000e+00 

0.7 4.06000 4.06000 0.000000e+00 

0.8 4.96000 4.96000 0.000000e+00 

0.9 5.94000 5.94000 0.000000e+00 

1 7.00000 7.00000 0.000000e+00 

 

Figure 4: Graph for example 4 

Example 5. Consider linear Volterra integro-differential equation of second kind 

𝑢′′(𝑥) = 𝑥 + ∫(𝑥 − 𝑡)𝑢(𝑡)

𝑥

0

𝑑𝑡 

With the initial condition 𝑢(0) = 0, 𝑢′(0) = 1 

Where the function 𝑓(𝑥) is chosen such that the exact solution is given by 
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𝑢(𝑥) = sinh (𝑥) 

The approximate solution 𝑢𝑛(𝑥) of 𝑢(𝑥) is obtained by the Galerkin-Genocchi polynomial 
method. 

Table 5: We Present the Exact and Approximate Solutions of the Equation in 
Example 5 in Some Arbitrary Points, the error for N=10 

x exact solution 𝑢 approximate solution 𝑢𝑛 Error 

0.0 0.0000 0.0000 0.000000e+00 

0.1 0.1002 0.1002 3.234746e-12 

0.2 0.2013 0.2013 5.589917e-12 

0.3 0.3045 0.3045 9.178436e-12 

0.4 0.4108 0.4108 1.205841e-11 

0.5 0.5211 0.5211 1.446709e-11 

0.6 0.6367 0.6367 1.795752e-11 

0.7 0.7586 0.7586 2.116352e-11 

0.8 0.8881 0.8881 2.350942e-11 

0.9 1.0265 1.0265 2.713829e-11 

1 1.1752 1.1752 2.997913e-11 

 

Figure 5: Graph for example 5 

Example 6. Consider the integro-differential equation 

𝑢′(𝑥) = −cos(2𝜋𝑥) − 2𝜋 sin(2𝜋𝑥) −
1

2
sin(4𝜋𝑥) + ∫ sin(4𝜋𝑥 + 2𝜋𝑡) 𝑢(𝑡)

1

0

𝑑𝑡 

With the initial condition 𝑢(0) = 1, 
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Where the function 𝑓(𝑥) is chosen such that the exact solution is given by 

𝑢(𝑥) = cos (2𝜋𝑥) 

The approximate solution 𝑢𝑛(𝑥) of 𝑢(𝑥) is obtained by the Galerkin-Genocchi polynomial 
method. 

Table 6: We Present the Exact and Approximate Solutions of the Equation in 
Example 6 in Some Arbitrary Points, the Error for N=9 

x exact solution 𝑢 approximate solution 𝑢𝑛 Error 

0.0 1.0000 1.0000 7.227990e-08 

0.1 0.8090 0.8090 1.829569e-05 

0.2 0.3090 0.3090 9.117870e-05 

0.3 -0.3090 -0.3090 1.261507e-05 

0.4 -0.8090 -0.8090 4.260336e-05 

0.5 -1.0000 -1.0000 1.261118e-04 

0.6 -0.8090 -0.8090 4.352714e-05 

0.7 -0.3090 -0.3090 1.050012e-05 

0.8 0.3090 0.3090 8.549721e-05 

0.9 0.8090 0.8090 2.149635e-05 

1 1.0000 1.0000 1.244871e-05 

 

Figure 6: Graph for example 6 
 
5. CONCLUSION 

This article deals with the numerical solution of first order Fredholm and Volterra integro-
differential equations of the second kind, using the Galerkin method by means of 
Genocchi polynomials. This technique was tested on six examples, and the results were 
satisfactory and the method was quite effective. In addition, this method can be applied 
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to high order Fredholm and Volterra integro-differential equations of the second kind, 
where the Matlab program is used to obtain approximate solutions. 
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