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Abstract 

DDoS attacks, which aim to overwhelm a system with requests, are commonplace in the cyber world. In 
this type of assault, bandwidth and processing resources are deliberately clogged in order to disrupt the 
interactions of legitimate users. These attacks operate by inundating the victim's system with a deluge of 
packets, rendering it inaccessible. Diverging from the singular source of Denial of Service (DoS) attacks, 
DDoS attacks emanate from a multitude of servers, magnifying their impact. Over the last decade, a 
concentrated effort has been invested in comprehending the orchestration and authentication of DDoS 
attacks, resulting in valuable insights into discerning attack patterns and suspicious activities. Currently, the 
focus has shifted towards real-time detection within the stream of network transactions, constituting a critical 
research domain. Yet, this focus often sidelines the importance of benchmarking DDoS attack assertions 
within the streaming data framework. As a remedy, the Anomaly-based Real-Time Prevention (ARTP) 
framework has been formulated, designed specifically to combat application layer DDoS attacks, 
particularly targeting web applications. Employing advanced machine learning techniques, ARTP offers 
adaptable methodologies to swiftly and accurately pinpoint application-layer DDoS attacks. Rigorous 
testing on a representative LLDoS (Low Level DoS) benchmark dataset has affirmed the resilience and 
efficiency of the proposed ARTP model, underscoring its capacity to achieve the research objectives set 
forth. 

Keywords - Detection of App-DDoS, Denial of Service (DoS) attacks, Application Layer DDoS (App-
DDoS), LLDoS Dataset, Distributed DoS (DDoS) Attacks. 

 
1. INTRODUCTION 

Without question, in the present setting, the Internet has established itself as a crucial 
component in the realm of daily business activity. The extraordinary evolution of 
communication methods, trade practices, and individual online presence continues to 
captivate attention. With this dynamic setting, it's no surprise that Internet vulnerabilities 
like Denial of Service (DoS) attacks and their more sophisticated sibling, Distributed 
Denial of Service (DDoS) attacks, have come to the fore as major problems. A DoS attack 
orchestrates a direct attack on a chosen target system, often a web server, with the intent 
of incapacitating its ability to serve legitimate users, all while refraining from intruding 
upon the underlying network or server infrastructure. Conversely, DDoS attacks employ 
a distributed array of devices scattered across the Internet, collectively generating a 
torrent of traffic that inundates the targeted systems, depleting their resources and 
distorting network integrity, thereby rendering the systems inaccessible to genuine users. 
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Network layer DDoS attacks and application layer DDoS attacks are the two main types 
of distributed denial of service attacks [1]. Both types are typical in the world of distributed 
denial of service attacks. The first form of attack occurs when an adversary uses 
techniques like IP spoofing to bombard the target system with counterfeit data packets. 
However, application layer DDoS attacks, or App-DDoS attacks as they are more 
commonly known, involve overwhelming the targeted system with a large number of valid 
requests. In these attacks, the assailant's compromised computers need to establish valid 
TCP connections with the victim's system, else the connections would be severed. A 
notable example here is the HTTP flood, a method that leverages surges in HTTP 
requests to strain the targeted servers' capabilities. Functioning at the application level, 
these attacks aim to besiege the host server of online applications by inundating it with 
an avalanche of simultaneous and seemingly legitimate requests, culminating in 
rendering the server unreachable for legitimate clients. 

In an effort to address and comprehend these intricate tactics, recent works, such as [2], 
delve into novel strategies to bypass DDoS defenses and uncover tactics that facilitate 
more efficient attack collaborations. Notably, the HTTP flood technique amplifies the 
volume of HTTP requests, orchestrating a surge in transactional interactions to exploit 
the vulnerabilities in the targeted servers' architecture [3, 4]. Amidst this inundation, the 
targeted servers grapple with the challenge of differentiating between legitimate payload 
data and the deluge of seemingly ordinary HTTP requests. 
 
2. RELATED WORK 

Some of the DDoS defense solutions tailored for countering HTTP floods exhibit a 
reliance on application layer insights, as indicated by a recent survey [5]. An example of 
such is the DDoS shield [6], which employs the detection of session initiation times and 
the manipulation of time intervals between arrivals to thwart HTTP floods. An additional 
noteworthy approach, investigated in the work "Using Page Access Lead to Fight HTTP 
Flood" [7, 8], delves into the intricate relationship between data sizes and browsing 
durations. Yet, these methodologies fall short when confronted with the formidable packet 
transmission rates facilitated by the coordinated efforts of malicious Botnets [9]. 
Introducing a CAPTCHA-based probabilistic validation system, while effective in rare 
cases, risks unduly burdening the user experience. This could potentially translate into 
an inadvertent Denial of Service scenario, particularly when addressing practical 
grievances is paramount. The Hidden semi-Markov model (HSMM) is introduced in [10] 
for this purpose; it utilises the specifics of transactional request instances to decode 
typical client access patterns. This model further evaluates the ongoing influx of clients 
using HSMM-derived data. However, this approach yields a substantial volume of false 
alerts, attributable to the variability in invocation patterns, especially considering the 
diverse browsing behaviors of actual users. Instances where clients engage external 
online interfaces, input URLs for potential queries, or navigate with a medley of browsers 
can inadvertently trigger false alarms, adding an element of uncertainty to the equation. 
The primary objective of the proposed methodology centers on assessing transactional 
correlations, drawing from both regular and flood data. In contrast to conventional 
benchmarking techniques, the focal points of this proposed model derive from extensive 
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observations of the request stream across an extended timeframe. The subsequent 
sections of this paper meticulously follow a well-organized trajectory: Section 3 elaborates 
on the proposed ARTP model, while Section 4 delves into a comprehensive examination 
of a test study and evaluates the efficacy of ARTP. Finally, Section 5 culminates this 
scholarly endeavor by offering conclusive insights. 
 
3.WEB-BASED APPLICATION LAYER DISTRIBUTED DENIAL-OF-SERVICE  
ATTACKS: A DATA-DRIVEN MACHINE LEARNING STRATEGY 

To answer the danger posed by Application Layer DDoS attacks on the internet, we have 
designed and fine-tuned an anomaly-based Real-Time Prevention (ARTP) framework 
[11]. The overwhelming number of requests at once inspired the development of this 
framework. The system's "speedy and early detection" of Application Layer DDoS attacks 
has been a huge success, making that goal one of its most significant achievements. The 
essence of the ARTP model lies in its multifaceted entity metrics, encompassing crucial 
facets such as "request chain length, variations in packet count, permutations in packet 
sorting, intervals between requests, and the contextual backdrop of transactional chains." 
Importantly, a multitude of prevalent benchmarking methods, often hinged on sessions or 
requests as primary inputs, inadvertently bypass the fundamental basis of this 
methodology. To evaluate the effectiveness and potency of the proposed model, 
comprehensive testing was undertaken utilizing the LLDoS dataset, underscoring both its 
adaptability and robustness. It is noteworthy that the envisaged model exhibits 
remarkable efficacy within the realm of application layer DDoS attacks. This holds 
especially true given the contemporary landscape of web applications, where the sheer 
magnitude of incoming requests has escalated to the scale of petabytes, dwarfing the 
gigabyte-level loads of previous web request paradigms. 

3.1 Finding the Length of a Time Frame 

The acronym CS={s1, s2,…,sn} encapsulates an assemblage of Client Sessions. Each 
session within this collection, denoted as {l∃l∈si^si∈CS}, encompasses transactions 
categorized as either N (normal) or D (disordered, signifying a DDoS attack). The 
aggregate count of transactions in CS encompasses both regular (CSN) and anomalous 
(CSD) transactions, jointly forming the composite volume of transactions associated with 
DDoS attacks. The heuristic measures, outlined in Section 3, will undergo validation 
through experimentation employing these datasets. To provide further clarification, the 
dataset CS, which encompasses both CSN and CSD instances, undergoes a crucial 
partitioning process into distinct CSN (normal) and CSD (DDoS attack) subsets. 
Subsequently, harnessing the K-Means technique [12], the sessions within these subsets 
are individually clustered. This strategic clustering aids in the determination of the optimal 
number of clusters within the CSN and CSD sets. This culminates in the simultaneous 
computation of time frames for both CSN and CSD, adding a layer of precision to the 
analysis process. 
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Figure 1: The architecture of Network Anomaly Real time Prevention Detection 
System 

In fig. 1, web based application layer works on network Anomaly Real time Prevention 
Detection System, here the ARTP system can be categorized into three network systems 
models, the first model will be designed for detecting the DDoS attack on the network 
traffic models that can be represented as input models and the second intrusion detection 
system model will be represented as network analysis model. The third network model 
will be represented as DDoS attack detection generation alert message this means 
whenever getting the attack detection from the network application layer automatically 
alert message will be generated and sent to the ARTP system, So this is the output model. 
In the analysis model, there are some feature selections like data preprocessing, feature 
analysis and selection, machine learning classifier and attack recognition i.e., DDoS 
attack detection model and decision making. The above all network models will be given 
detection of DDoS attack rate and the will be reduced attack rate by machine learning 
classifiers.  

Within the context of the amalgamated regular transaction group CSN, let C= {c1, c2… cm} 
denote a collection of clusters characterized by a spectrum of K values. Within the realm 
of each cluster Cj{cj∃cj∈ C^ j= 1, 2, 3,…M}, the determination of time frames entails a 
calculation rooted in the discrepancy between the completion time of the most extensive 
session and the initiation time of the most succinct session. 

Considering the cluster Cj, let SBN(Cj) = {sb1, sb2, … sb|cj|} represent an array of session 
start times, arranged in ascending order. Here, sb1 corresponds to the session with the 
earliest start time, while sb|cj| corresponds to the one with the latest initiation time. 
Additionally, denote SEN(ci)= {se1, se2,…se|ci|} as a sequence encompassing session end 
times within cluster ci, with se1 marking the termination of the shortest session and se|ci| 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 11-2023 
DOI: 10.5281/zenodo.10205690 

Nov 2023 | 421  

denoting the end of the longest one. The ensuing expression encapsulates the time frame 
of cluster cj (tf(cj)): 

tf(cj)=√(𝑠𝑒1 − 𝑠𝑒2)2                              (1) 

The standard length of a time frame is computed as follows, taking into account all 
clusters: 

<tf(cj)>=
∑ 𝑡𝑓(𝑐𝑗)𝑀

𝑗=1

𝑀
          (2) 

The Absolute Deviation (tfAD) of time frames for all clusters is defined as: 

tfAD=
√∑ (<𝑡𝑓(𝐶)>−𝑡𝑓(𝐶𝑗))2𝑀

𝑗=1

𝑀
         (3) 

Finally, the time frame (tf) is determined by multiplying the average length of the time 
frame (<tf (C) >) with the Absolute Deviation of the time frame (tfAD). 

tf=<tf(C)>+tfAD                    (4) 
 
4. THE HEURISTICS OF EMPIRICAL METRICS 

4.1 Request Chain Length (RCL) 

In the context of a DDoS attack, the assailants orchestrate numerous queries directed at 
the Web server. Conversely, a tactic involving substantial HTTP requests aims at 
compromising websites; furthermore, instances of such attacks can arise when genuine 
users inadvertently submit requests that vastly surpass typical sizes. To preempt possible 
memory-related challenges on the server end, the range of requests within specific time 
frames is delineated for both N (normal) and D (DDoS attack) scenarios, culminating in 
the creation of CSN and CSD. Within CSN, TS(CSN) = {ts1,ts2,…ts|TS(CSN)|} dissects the 
progression of transactions within the normal set into distinct time frames. Here, tsj 
represents the number of transactions received during the jth time frame, while tf denotes 
the temporal extent of the time frame, as elucidated in Section 3.1. 

The following algorithm is utilized to calculate the average chain length of transactions 
observed across all time frames within CSN: 

<TS(CSN)> = ∑ {|𝑡𝑠𝑗|∃𝑡𝑠𝑗 ∈ 𝑇𝑆(𝐶𝑆𝑛)}
|𝑇𝑆(𝐶𝑆𝑁)|
𝑗=1      (5) 

Within every CSN time frame cluster, the Absolute Deviation (clAD) of request chain 
length is computed using the followingformula: 

clAD = 
√∑ (<𝑇𝑆(𝐶𝑆𝑛)>−(|𝑡𝑠𝑗|∃𝑡𝑠𝑗∈𝑇𝑆(𝐶𝑆𝑛)))2

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
     (6) 

Within each time frame of the CS collection, the Request Chain Length (RCL) is 
determined by amalgamating the average transaction chain <TS(CSN)> with the 
Absolute Deviation of RCL (clAD). 

rcl(CSN) = <TS(CSN)> + clAD     (7) 
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4.2  Packet Count Ratio 

DDoS attacks deploy substantial bandwidth volumes to inundate their targets, rendering 
them inaccessible. Packet computation stands as a pivotal facet of any data flow, serving 
multifaceted roles such as counterfeit attack identification, unspoofed DDoS attack 
recognition, and most notably, acting as a flow coherence metric. Based on an analysis 
of the packet volume for each time period, this calculation approach evaluates the level 
of packet computation within the sequence of requests for both the N (normal) CSN and 
D (DDoS attack) CSD situations. In other words, the foundation for establishing whether 
or not a DDoS attack has happened is the analysis of packet volume for each time 

interval. Within this framework, the count of packets per time frame, denoted as tsj {tsj∃ 
tsj∈  TS(CSN) ^ =1,2,…|TS(CSN)|}, governs the computation, revealing the intricate 
interplay between packets and request patterns.     

rp(tji)= ∑
|𝑃(𝑡𝑠𝑗)|

∑ |𝑃(𝑡𝑠𝑘)|
|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1                                        (8) 

Time Frame Level Packets Support Absolute Deviation (tflpsAD) is determined for each 
time frame within the Contention Space Network (CSN) in the method described below. 

tflpsAD= 
√∑ (1−𝑟𝑝(𝑡𝑠𝑗))2

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
                                         (9) 

The total number of packets in a CSN is representative of the network's activity because 
it represents the average over all time periods, whereas the Time Frame Level Packets 
Support Absolute Deviation provides a comprehensive measure of packet intensity. We 
get the Time Frame Level Packets Support Absolute Deviation by adding these two 
quantities together. 

rpc(TS(CSN))= 
∑ 𝑟𝑝(𝑡𝑠𝑖)

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
+ 𝑡𝑓𝑙𝑝𝑠𝐴𝐷                              (10) 

4.3 Intervals between Request Ratios 

The interval between successive requests within a sequence, pertaining to the same 
session, is computed as the access time, initiating with the compilation of training-oriented 
transaction sets. For every session, a succession of time frames is generated, aiming to 
appraise the temporal span between requisites, both within normal contexts and during 
DDoS attacks. Within the scope of CSN, each time frame encompasses an Interval 
Absolute Deviation (iAD), computed in the ensuing manner: 

iAD= 
√∑ (𝑔𝑚(𝐶𝑆𝑛)−𝑙𝑚(𝑡𝑠𝑗))2

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
                        (11) 

In conclusion, the degree of interval is ascertained by aggregating the mean value 
computed across all CSN intervals, along with the inclusion of the Interval Absolute 
Deviation (iAD) concerning intervals within the training set CSN. This holistic approach 
encapsulates a comprehensive evaluation of interval dynamics. 
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ri(CSN)= 
∑ 𝑙𝑚(𝑡𝑠𝑗)

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
 + iAD                                           (12) 

4.4 Packet Type Ratio in a Predetermined Time Frame 

The term "packet ratio threshold" refers to the fraction of unique packet types, such as 
DNS, SMTP, FTP-DATA, SSL, POP3, HTTP, and FTP, that occur within a given time 
period that is less than the fraction of unique packet types, such as FTP-DATA, POP3, 
HTTP, DNS, SMTP, and FTP, that occur within the transactions of N (normal) as CSN 
and D (DDoS attack) as CSD. For each packet type included in the order of requests 

analyzed within tsl, the local support within CSN, represented by tsi {tsi∃ tsi∈ TS(CSN) ^  
i= 1,2,3,…|TS(CSN)|} of CSN, establishes the threshold. Moving on, for every type of 

packet, represented by ptk {ptk∃ ptk∈ PT^ k= 1,2,…,|PT|}, the Absolute Deviation (ptsAD) 
of packet type support is investigated across all time frames within CSN, juxtaposing local 
and global support. This evaluation unfolds in the following manner: 

ptsAD(ptk)= 
√∑ (𝑔𝑠(𝑝𝑡𝑘)−𝑙𝑠𝑡𝑠𝑖(𝑝𝑡𝑘))2

|𝑇𝑆(𝐶𝑆𝑛)|
𝑖=1

|𝑇𝑆(𝐶𝑆𝑛)|
                          (13) 

In the concluding phase, the degree of ptk (rpt(ptk))is determined through the summation 
of the average packet threshold type and the Absolute Deviation of packet type support 
(ptsAD). This computation transpires in accordance with the sequence of time lengths 
within the training set CSN, encompassing various packet types. 

rpt(ptk)= 
∑ 𝑙𝑠𝑡𝑠𝑖(𝑝𝑡𝑘)

|𝑇𝑆(𝐶𝑆𝑛)|
𝑖=1

|𝑇𝑆(𝐶𝑆𝑛)|
 + ptsAD(ptk)                           (14) 

4.5 Order of Requests or Request Chain Context 

Given the ensemble of generated transactions designated for training, the progression 
involves segmenting the sequence of requests into discrete time frames corresponding 
to both regular and DDoS attack instances. a request pair set rpsN is formulated within 
the training transaction set CSN, encompassing pairs rpsN = {p1, p2,…,p|rpsN|}, where each 
pair pi represents the immediate two consecutive requests within the CSN sequence. The 
local support lstsj (pi) attributed to lstsj (pi) of pi (pi∃ pi∈ rpsN ^ i=1, 2,…, |rpsN|) quantifies 
the occurrences of the pair pi within time frame tsj. The training dataset CSN includes all 
recorded sequences of requests, and for each pair pi (pi∃ pi∈ rpsN ^ i=1,2,…,|rpsN|) the 
cumulative support gs(pi) includes all instances of the pair. This iterative process 
culminates in a comprehensive understanding of request pair dynamics. 

When do these conditions start to shift from supporting pi locally to supporting it globally? 
The Absolute Deviation (rpsAD), an abbreviation of relative standard deviation, is 

calculated for each pi (pi∃ pi∈ rpsN ^ i=1, 2,…,|rpsN|), This calculation is expressed as 
follows: 

rpsAD= √
∑ (𝑔𝑠(𝑝𝑖)−𝑙𝑠𝑡𝑠𝑗(𝑝𝑖))2

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
                                                         (15) 
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The mean value derived from all the pair carry values is computed across the sequence 
of time frames within the training set CSN. Moreover, for every possible pairing that arises 
within the scope of this paper, the Absolute Deviation (rpsAD) of request pair support is 
explored. The sequence (pi∃ pi∈ rpsN ^ i=1,2,…,|rpsN|) is being evaluated in parallel on 
the request chain context rcc(pi).  

rcc(pi)= 
∑ 𝑙𝑠𝑡𝑠𝑗(𝑝𝑖)

|𝑇𝑆(𝐶𝑆𝑛)|
𝑗=1

|𝑇𝑆(𝐶𝑆𝑛)|
 + rpsAD                                               (16) 

 
5. OUTCOMES OF EXPERIMENTS AND PERFORMANCE EVALUATION 

The tests have come to a close to evaluate the suggested model ARTP's, resilience, 
process complexity, Scalability and detection accuracy. 

5.1 Experimental Results 

To simulate application layer DDoS attack scenarios the framework LLDOS 2.0.2 [13, 14] 
is harnessed under both normal and attack conditions. For the testing phase, a total of 
229,386 transactions are processed, encompassing both N (normal) and D (disruptive) 
transactions representative of DDoS attacks. 60% of this dataset has been set aside for 
training purposes, while the remaining 40% will be used for testing. 

Assessed independently using the CS dataset and each metric is generated, which 
comprises CSN (normal) and CSD (DDoS attack) instances. CSN comprises a total of 
123,780 transactions, out of which 60 percent (74,260) are dedicated to training, and the 
remaining 40 percent (49,520) are reserved for testing. Sessions in the CSN [15] training 
and testing datasets are evenly divided into 1 minute and 10 second intervals. As a next 
step, the K-Means technique is applied separately to both the training and testing phases 
to establish the locations of any existing clusters. Similarly, the assault dataset CSD is 
divided into sessions and clusters using the same manner to facilitate training and testing. 
Additionally, temporal frames (as detailed in Sect. 3.1) are synthesized from the stream 
of sessions, subsequently defining the temporal scope of the CSN and CSD training and 
evaluation phases in table 1. 

5.2  Request chain length (RCL) 

The request chain length is characterized by the maximum count of requests originating 
from a transaction. In fact, this concept is expanded in the CSN and CSD training 
environment to incorporate the typical length of requests recorded from clients within a 
time frame described as either an attack or a normal scenario. The goal is to better equip 
pupils to deal with difficulties in the actual world. A comprehensive overview of these 
details is meticulously presented in Table 2. 

 

 

a. Packet Count Ratio 

Within the training setting, the ratio of packet counts is calculated by tallying the total 
number of packets received during each interval along the request chain, which is split 
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into two groups: CSN and CSD. There is a chain of requests that undergoes this analysis. 
All the while the CSN and CSD teams are being trained and tested, a thorough 
examination of the packet calculating process is being conducted. FTP-DATA, SSL, 
HTTP, POP3, DNS, and SMTP packets are only few of the many that fall inside the scope 
of this inquiry. These computations encompass the calculation of the packet ratio across 
all time frames within CSN and CSD. The detailed results of these computations are 
meticulously presented and recorded in Table 2. 

b. The Ratio of Request Intervals 

Extracted metrics from the training sets are also summarised in depth in the table. 
Request Chain Length (RCL), Request Interval Ratio, Packet Count, and Packet Count 
Ratio are all metrics that may be measured across both CSN and CSD. All of these 
metrics have been extracted from the designated training datasets and are presented in 
Table 2. The term "approach time" is used in the context of CSN and CSD transactions 
to describe the duration of time between the first and last requests made within a given 
session. For each time period, the ratio of intervals between requests is calculated by 
painstakingly calculating the approach time for each pair of requests within the same 
session. 

Table 1: CSN and CSD packet types, request chain length (RCL), packet count 
ratio, and RCL are all measured using the provided training sets 

Number of Successful Transactions (CS) 2,29,386 

 Training (60%) Testing (40%) Total 

N (Normal) CSN 

The operations 74,260 49,520 123,780 

Sessions 2872 1838 4710 

Groups 287 175 462 

tf: the length of the time frame 608 614 1222 

Many time frames 242 147 389 

D (DDoS Attack) 
CSD 

The operations 56,440 35,961 92,401 

Sessions 2548 1533 4081 

Groups 253 154 407 

tf: the length of the time frame 744 759 1503 

Many time frames 264 167 431 

 

 

 

 

 

 

 

Table 2: Shows the distribution of requests for CSN testing and CSD training as a 
proportion. The 11th and 14th hours were very different from one another. 
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Types of packets 

CSNpacket count of N 
(normal) 

CSD packet count D (DDoS 
Attack) 

Training Testing Training Testing 

HTTP 34,117 21,470 42,088 28,106 

FTP 11,146 8798 7540 6410 

FTP-DATA 5857 3527 2308 982 

SMTP 18,813 11,397 3836 1846 

POP3 7168 4362 0.0 0.0 

DNS 285 207 0.0 0.0 

SSL 143 138 0.0 0.0 

SSH 57 23 0.0 0.0 

Packet count ratio 0.767 0.507 0.534 0.307 

Length of the request chain (RCL) 22.254 21.735 28.408 29.10 

Intervals between requests ratio 0.351 0.140 0.223 0.155 

 

 

Figure 2: Comparative analysis of request for CSN tests and CSD Training as a 
Proposition 

In figure 2, the representations of types of packets were tested on normal attack of CSN 
packet count of N and DDoS attack of CSD packet count D. the resultant graph will be 
analyzed on training and testing of CSN packet count of N and CSD packet count of D.  

c. Ratio of Packets Types 

Training and testing procedures that use the CSN and CSD datasets allow for the 
examination of ratios associated with threshold creation for each packet type. Internet 
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Protocol (HTTP), File Transfer Protocol (FTP) (including FTP-DATA), Simple Mail 
Transfer Protocol (SMTP), Post Office Protocol (POP), and Secure Sockets Layer (SSL) 
packets are all included here. The required ratios are detailed in Table 3 below. These 
tables owe a great deal to the CSN and CSD training sets. This set of ratios encapsulates 
dissimilar packet types constituting a substantial portion of commonly employed packet 
types within the application layer. 

5.3  Performance Analysis 

Precision, sensitivity (true positive rate), specificity (true negative rate), accuracy, and F-
measure are some of the key parameters that can be used to assess the usefulness of 
ARTP's detection capabilities. Quantitative parameters can include things like accuracy, 
sensitivity (the proportion of correct diagnoses), and specificity (the proportion of incorrect 
diagnoses). Similarly, a quantitative parameter is specificity. As showcased in Table 5, 
this procedure's statistics offer insights into its performance. Predicted requests are 
accurately classified as normal when they indeed are, and expected attacks are correctly 
labeled as attacks as well. Sensitivity, as determined in the experiments, guides the 
identification of true positives projected as positive outcomes. Meanwhile, true negatives 
that are accurately anticipated as negatives are attributed to specificity. Accuracy, 
signifying the duration required for precise request classification, is also a notable 
measure. 

In other words, the evaluation shows a lower risk of misidentifying a normal condition as 
an attack than misclassifying an attack configuration as normal, hence the sensitivity 
rating is higher than the specificity rating. The evaluation shows that the sensitivity is 
greater than the specificity. An attack misclassified as a normal request has a 1-sensitivity 
rate of 0.0145, whereas misclassifying a normal request as an attack has a 1-specificity 
rate of 0.0859. There has been a significant performance boost across the board for each 
of these numbers. Consequently, it is reasonable to assert that the suggested ARTP 
demonstrates increased effectiveness in detecting attacks, as evident from the numerical 
performance metrics and practical observations documented in Table 4. 

In contrast, the FAIS [16] and FCAAIS [17] models are proposed for DDoS attack 
detection. Conducted on the same dataset, these models exhibit scalability and resilience 
in forecasting the scope of network DDoS attacks, achieving an approximate detection 
accuracy of 91%. However, when juxtaposed with the proposed ARTP model, these 
approaches encounter challenges stemming from process complexity, particularly in 
terms of the statistical metrics employed for performance calculation. Notably, as 
displayed in Table 5 and Fig. 4, the precision of our proposed ARTP model surpasses 
both FAIS and FCAAIS, exemplifying higher predictive accuracy. 

 

 

Table 3: The Metric's Values, as well as Packet type Ratios for Different Packet 
Types 
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Types of 
packets 

The ratio between packet types 

N (normal) CSN D (DDoS Attack) CSD 

Training 

Test 

Training 

Testing Minimum 
limit 

Maximum 
limit 

Minimum 
limit 

Maximum 
limit 

HTTP 0.4384 0.46 0.36 0.68 0.75 0.77 

FTP 0.1348 0.16 0.15 0.12 0.13 0.12 

FTP-DATA 0.0627 0.07 0.07 0.02 0.05 0.02 

SMTP 0.2368 0.28 0.23 0.053 0.07 0.07 

POP3 0.0982 0.11 0.08 0.0 0.0 0.0 

DNS 0.0025 0.004 0.03 0.0 0.0 0.0 

SSL 0.0009 0.003 0.03 0.03 0.05 0.47 

 

 

Figure 3: Different Packet Types of Metric Values and Packet Type Ratios 

In figure 3, different packet types of metric values and packet type ratios will be depicted 
in resultant graph. All types of packets compared to the ratios between the packet types 
of normal attack CSN and DDoS attack CSD with minimum and maximum limits will be 
done on testing phase. Finally the resultant graph will be shown as accuracy of all types 
of packets. 

 

Table 4: Metrics for ARTP Performance and Actual Outcomes 
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True positive (tp) The "normal" transactions really are routine ones. 36,531 

False Positive (fp) The total number of legitimate transactions that were incorrectly 
marked as intrusions. 

4244 

True Negative (tn) How many spoofed transactions are actually spoofed. 45,144 

False Negative (fn) The percentage of unapproved transactions that are mistakenly 
classified as regular. 

541 

Precision 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

0.897 Accuracy (𝑡𝑝 + 𝑡𝑛)

(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)
 

0.944 

Recall/sensitivity 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

0.985 F-Measure 2× (precision * recall)/ 
precision + recall 

0.938 

Specificity  𝑡𝑛

𝑓𝑝 + 𝑡𝑛
 0.914 

Table 5: FAIS and FCAAIS are used to compare the Suggested ARTP Technique 

 ARTP FAIS FCAAIS 

Precision 0.938 0.911 0.855 

Sensitivity/recall 0.944 0.851 0.917 

Specificity 0.915 0.496 0.885 

Accuracy 0.985 0.935 0.942 

F-Measure 0.895 0.889 0.869 

 

 

Figure 4: A Comparison is Presented between FCAAIS, FAIS and ARTP 

In figure 4, a comparison is depicted between the ARTP with FCAAIS and FAIS based 
on precision, recall, specificity, F-measure and accuracy. These metrics, including 
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precision, recall, specificity, F-measure, and accuracy, were employed to evaluate the 
efficacy of each algorithm in various classification or pattern recognition tasks. 
 
6. CONCLUSION 

To detect, defend against, and prevent distributed denial of service (DDoS) attacks at the 
application layer in real time across different types of online services, this study proposes 
a machine learning approach that is inspired by empirical measurements. The author of 
this piece makes an earnest effort to categorise the article's contributions along three 
distinct directions. Firstly, the initial contribution revolves around scrutinizing feature 
metrics intrinsic to the demand stream, thereby discerning whether the intent is aligned 
with an attack or a benign state. Moreover, experimental threshold values, stemming from 
the metrics defined within the ARTP framework, are employed to ascertain whether a 
given stream's behavior qualifies as a flood or not. 

The second contribution centers on the observation of ARTP behavior, substantiated 
through rigorous experimentation on the LLDoS dataset. This component operates by 
amalgamating perceived procedural intricacies with optimal swiftness to augment the 
precision of detection. The outcomes highlight that the indicators extrapolated from the 
training dataset, serving to evaluate the state of the request stream, hold significant 
promise and indispensability. Furthermore, the third contribution involves the utilization of 
threshold values derived from the training dataset, allowing the determination of whether 
a request stream is potentially indicative of an application layer DDoS attack throughout 
the entire temporal span. The robustness of ARTP is rigorously tested under 
straightforward conditions and at elevated velocities. Consequently, the strategy 
delineated in this paper demonstrates a remarkable ability to uphold peak predictive 
accuracy, concurrently minimizing computational overhead—a testament to its effective 
operational efficacy. 
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