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Annotation 

This paper presents the results of the study of natural and forced vibrations of flat elements, taking into 
account the layering of the element material, rheological viscous properties, environmental influences, 
deformable base, anisotropy, etc. Various formulations of boundary value problems of vibrations of a 
rectangular flat element are considered, both taking into account viscosity. and taking into account the 
above factors of a geometric and mechanical nature, which are trance dental frequency equations, which 
is reduced to algebraic ones, and the influence of both boundary conditions along the edges of a 
rectangular plate and the parameters of a geometric and mechanical nature on the frequencies of natural 
oscillations of rectangular flat elements is considered and the previous results are generalized for a 
rectangular plate, the material of which satisfies the viscoelastic Maxwell model. [One] When studying 
oscillatory processes in a solid deformable body, it is advisable to take the kernel of viscoelastic operators 
as regular, since only such operators describe instantaneous elasticity and then viscous flow, which is 
typical for deformable solids. Integro-differential equations with regular kernels are known to be 
equivalent to partial differential equations. Depending on the considered particular types of a flat element 
in the general solutions of a three-dimensional problem, the main unknown functions are chosen: 
displacements or deformations at points of a fixed plane of a flat element, in particular, in the middle 
plane of a plate of constant thickness. Displacements and stresses at an arbitrary point of a flat element 
are expressed in terms of the main unknown functions, which are determined from the boundary 
conditions on the surfaces of a flat element. The equations obtained for the main unknown functions and 
are the general equations for the vibration of a plane element, containing the derivatives of functions with 
respect to coordinates and time of any arbitrarily large order. General solutions are presented as power 
series over the thickness of a flat element. The general solution refers to an equation of the hyperbolic 
type, which describes the oscillatory and wave processes in a flat element. Restricting ourselves in the 
series of the general equation to a finite number of first terms, we obtain approximate equations for the 
vibration of one or another flat element. The proposed approach makes it possible to rigorously construct 
approximate theories of the oscillations of flat elements of various types. 

Keywords: boundary conditions, deformation, flat element, movement, natural vibrations vibration 
theories. 

 
1. INTRODUCTION 

When solving applied problems of vibration of rectangular flat elements, a wide class of 
vibration problems arises associated with various boundary value problems: 
approximate vibration equations, various boundary conditions at the edges of a flat 
element, and initial conditions. In the theory of oscillations, an important point is the 
determination of the frequencies of natural oscillations, the solution of problems of 
forced oscillations of a flat element and the study of the propagation of harmonic waves 
in them. 
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In problems of determining the frequencies of natural vibrations of flat elements hinged 
at the edges and on the basis of approximate theories obtained on the basis of 
hypotheses and assumptions of a mechanical and geometric nature, in particular, on 
the basis of approximate equations such as the parabolic Kirchhoff equation, which 
poorly describe the wave and oscillatory nature of behavior flat element under non-
stationary external influences. 

In the study of harmonic waves in deformable bodies, the concept of phase velocity is 
introduced as the rate of change in the state of the medium, while the phase velocity is 
expressed in terms of the frequencies of natural oscillations and therefore the study of 
the propagation of harmonic waves is directly related to the problems of determining the 
natural forms and frequencies of oscillations of flat elements limited in plan. 

This paper presents the results of the study of natural and forced vibrations of flat 
elements, taking into account the layering of the element material, rheological viscous 
properties, environmental influences, deformable base, anisotropy, etc. 

The influence of these factors greatly complicates the study of problems of natural and 
forced vibrations of a plane element, of the propagation of harmonic waves in them. 

The work is devoted to the formulation of various boundary value problems of 
oscillations of a rectangular flat element, both taking into account viscosity. And taking 
into account the above factors of a geometric and mechanical nature. 

 
2. FORMULATION OF THE PROBLEM 

We confine ourselves to solving the task on the basis of an approximate equation of 
transverse oscillations of the fourth order [2] 
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Since the edges of );0( 2ly = the plate are hinged and supported, the solution of 

equation (1) will be sought in the form 

( ) ( ) 















= 



= 21

sinexp,,
l

yk
xWt

h

b
ityxW

k
k




(2) 

Substituting (2) into equation (1), for W k we obtain an ordinary differential equation 
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Where the coefficients B 0, B 1 are equal 
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The general solution of the equation (3) is written as 
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where C j are the integration constants, the a i ,a j roots of the characteristic equation 
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The integers (n ,m ) are chosen from the condition of simplifying the solution when the 

boundary condition on the left edge x= 0 is satisfied, and the other boundary conditions 

on X=l 1 lead to a transcendental equation for determining the self- frequencies of the 

plate.[3] 

Let's consider some of the formulated tasks. 

In this case, at the edges of the plate, we have the boundary conditions 
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k

       
( x= 0; l 1 ) (8) 

Under boundary conditions (8) in the general solution (5), the numbers n=0; m=0, from 

the condition on the left end of the constant integration С 1, C 2 are zero, and from the 

conditions on the right end we get 
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whence from the condition of non-triviality of the solution we get the transcendental 

frequency equation 
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Firstly, let us consider the simplest transcendental equation 
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We introduce the notation 
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and we will omit the strokes in the future for simplicity.  Since the sines and cosines of 
any argument are equal 
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That equation (11) is equivalent to the following 
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If we accept the quantity 0a is determined from the expression (7) with a plus sign under 

the root, then it follows this root does not vanish for any values of ,,vy .[ 4] 

Therefore, at the beginning it is possible to 01 =a or for  we obtain the equation 
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whose roots are equal 
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since the series in the expressions of trigonometric functions are convergent and the 

series in equation (12), equivalent to equation (11) is also convergent, in the study of 

the partial equation (13) it can be limited to a finite number of first terms. 

Taking the first three terms in the series (3), we write it in the form 
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The roots of the expression α 1 = 0 are equal to (15). The quantity of )( 2

0
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1 aa − is non-zero 

for any values of ,,vy . 

If in the expression (16) we take only the first two terms, we get 
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If we take all the first three terms in the expression, we get 
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and their corresponding frequency equation 
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which has two positive roots. 

Similarly, one can take the first four or more terms in expression (13) and obtain a more 
accurate frequency equation and corresponding frequencies  .[ 5] 

To find the frequency equation from the series of equation (13), it is necessary to clarify 

the condition of appropriate retention of a finite number of terms. 

Let us apply the d'Alembert principle of series convergence to the series in equation 

(13). We get [6] 
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The analysis of inequality (23) shows that it is valid when the solving the inequality
 

2

,

2

.

242

,
87

8
2

87

8
jijiji Cq

v
EDq

v
=









−
+−









−
− 

 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 
ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 05-2023 
DOI 10.17605/OSF.IO/ZJA8G 

May 2023 | 31  

where the coefficients D, E are equal 
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By the given parameters of a geometric and mechanical character from the inequality 
(24) one can determine the necessary number of first terms in series (13) for finding the 

frequency equation of relative frequencies  . 

We consider the transcendental equation (10). Like transcendental equation (11), 

equation (10) is equivalent to the following 
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From the equation it follows that, at first, a 1 =0 and we get the frequencies (15). 

We write equation (25) by writing the first terms 
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Likewise, we can suppose approximately 
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and get the frequency equation 
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having positive roots. 

Thus, transcendental frequency equations can be reduced to algebraic and to 

investigate the influence of both boundary conditions along the edges of a rectangular 

plate or a rectangular flat element, as well as geometric and mechanical character on 

the self - oscillatio n frequencies of rectangular flat elements . 

Let us generalize the previous results for a rectangular plate or a flat element, the 

material of which satisfies the Maxwell viscoelastic model .[ 7] 

Suppose we have a rectangular homogeneous isotropic plate. 

In this case, the solution of an approximate fourth order equation will be sought in the 

form 
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where   is the complex frequency, the real part of which determines the law of damping 

of oscillations, and the imaginary part determines the frequencies of self-oscillations. 

For W k we get an ordinary differential equation 
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The coefficients A j are given in the previous paragraphs.

 

The general solution of equation (32) we write in the form 
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that is instead of trigonometric functions, we have hyperbolic. 

All the boundary value tasks considered above leading to transcendental equations are 

solved in a similar way. Transcendental equations are obtained from the previous ones, 

in which values a j must be replaced by values ia j , where i is an imaginary unit.[8] 

For example, the transcendental equation (11) goes into the equation 
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One of the frequency equations of the formula (36) follows from the condition 0=ja and 

we get 
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(37) 

which coincides with the frequency equation for a rectangular hinged and supported 

plate on all four sides of the plate, has two complexly conjugate roots.[9] 

 
3. METHODS  

The theory of vibrations and the method for calculating the vibrations of a flat element, 
taking into account the above factors of a mechanical, rheological and geometric nature, 
are based on the consideration of a flat element in a three-dimensional setting of the 
mechanics of a solid deformed body, under the same boundary and initial conditions. 
The three-dimensional problem is solved using the methods of Fourier and Laplace 
integral transformations. In transformations, general solutions of a three-dimensional 
dynamic problem are constructed. 

Let us present the results obtained by the above method for various types of flat 
element. The general equation of the plate oscillation with respect to the transverse 
displacement W of the points of the middle plane of the plate z = 0 has the form 
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,1;;0 1−−+ −==−== MNDfff zzzjz  

where N and are M the viscoelastic operators 
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( )tyxf z ,, - external unsteady forces, 

( ) ( )
nQ,, 1

2

1

1  operators of the form 
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The general equation (40) is complex in structure and is of little use for solving applied 
problems. From the general equation one can obtain approximate oscillation 
equations. For example, limiting ourselves in the series of sums of the equation to the 
first two terms, we obtain an approximate equation [10] 
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 (41) 

where h2 is the plate thickness. Equation (41) is a generalization of the Kirchhoff, S.P. 

Timoshenko and other authors. 

If a homogeneous plate lies on a deformable base, then in equation (4 1 ) it is 
necessary to add the rebound law, which has the form 
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111 ,, pNM  base settings. As you can see, the repulse law is different from Winkler 's. 

When solving various problems of vibration, say, of rectangular plates, it is necessary to 
formulate the boundary and initial conditions. The general solutions obtained and the 
dependences of displacements and stresses on the sought-for functions allow us to 
unambiguously and rigorously derive the boundary conditions. It is shown that for 
hinged and rigid fastening the boundary conditions coincide with the classical ones , 
and for a stress-free edge, the boundary conditions for a homogeneous isotropic plate 
of the form ( constx = ) are obtained: 
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 (43) 

where one of the conditions contains an inertial component, which corresponds to the 
d'Alembert principle of mechanics. If the flat edge of the plate is in rigid contact with the 
deformable vertical plate, then the elastic embedment boundary condition has the form 
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where 111 ,, MDp are the plate parameters. 

 
4. CONCLUSION  

Depending on the considered particular types of a flat element in the general solutions 
of a three-dimensional problem, the main unknown functions are chosen: displacements 
or deformations at points of a fixed plane of a flat element, in particular, in the middle 
plane of a plate of constant thickness. Displacements and stresses at an arbitrary point 
of a flat element are expressed in terms of the main unknown functions, which are 
determined from the boundary conditions on the surfaces of a flat element. The 
equations obtained for the main unknown functions and are the general equations for 
the vibration of a plane element, containing the derivatives of functions with respect to 
coordinates and time of any arbitrarily large order. General solutions are presented as 
power series over the thickness of a flat element. The general solution refers to an 
equation of the hyperbolic type, which describes the oscillatory and wave processes in a 
flat element. Restricting ourselves in the series of the general equation to a finite 
number of first terms, we obtain approximate equations for the vibration of one or 
another flat element. 

Thus, the proposed approach makes it possible to rigorously construct approximate 
theories of vibrations of various types of flat elements. 
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