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Abstract 

Visible near-infrared spectroscopy, renowned for its non-destructive nature, rapidity, cost-efficiency, and 
minimal sample preparation requirements, holds promise as a substitute for in vitro techniques. This 
ongoing study aims to evaluate the viability of reflective spectroscopy for predicting soil properties in ion 
farming plains across Gajapati district Odisha. A meticulous collection of 110 soil samples from these 
regions formed the basis, with their core attributes established using conventional in vitro methods. 
Employing a land spectroscopic device, the soil samples underwent spectral analysis within the wavelength 
band of 240 to 400 nm. Following spectrum recording, diverse pre-processing approaches were assessed, 
paving the way for the application of PCA (Principal Component Analysis) and PLSR (Partial Least Squares 
Regression) models to decipher pivotal soil properties. The superior model choice was subsequently 
employed to formulate regressive functions, facilitating the prediction of targeted parameters through linear 
regression. Findings spotlight the precision of both PCA and PLSR models in elucidating soil properties, 
with the latter displaying heightened accuracy. Evaluated using the RPD (Ratio of Performance to 
Deviation) metric, the most accurate estimations were achieved for minerals (RPD=9.34), pH (RPD=4.45), 
and nitrogen (RPD>2), all classified within category A. In contrast, accuracy proved lower for variables like 
clay, silt, gravel, phosphorus, potassium, calcium, magnesium, and gypsum, where RPD values ranged 
between 0.01 and 0.28. These values collectively affirm the satisfactory precision of spectral regressive 
functions in forecasting the targeted foundational properties. In summary, outcomes of this study 
underscore the commendable precision of both PCA and PLSR models in determining crucial soil 
parameters. Moreover, soil spectral data emerges as an effective indirect means to estimate the physical 
and chemical attributes of soil. Compared to conventional laboratory methods, this technique emerges as 
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a more cost-effective alternative, enhancing efficiency in terms of both time and cost while maintaining 
heightened precision. 

Keywords: Soil spectral pre-processing, soil properties, PCA and PLSR linear regressions 

 
INTRODUCTION 

In the current era, there is an undeniable global demand for spatial information about soil, 
essential for environmental assessment, modeling, and effective soil management. The 
complexity of soil, a dynamic and heterogeneous system governed by intricate processes, 
underscores the need for advanced analytical techniques. While numerous analytical 
methods have been proposed to establish relationships between physical and chemical 
soil components, the mutual interactions among these components have often been 
overlooked (Arnedo et al., 2017). Consequently, novel techniques are required to 
efficiently collect soil spatial data across wide areas, capturing multiple properties in a 
rapid and cost-effective manner (Stenberg et al., 2020). The urgency to streamline soil 
analysis for time and cost efficiency has surged, driven by the demands of environmental 
monitoring, soil quality assessment, and precision agriculture and afforestation (Viscarra 
Rossel et al., 2006). 

Reflective spectroscopy emerges as a viable solution, offering a potential alternative to 
conventional analytical methods (Cohen et al., 2005). The utilization of visible-near 
infrared reflective spectroscopy has gained traction over the past two decades. This 
growth can be attributed to a multitude of reasons that align with spectral data's 
capabilities. The advancement of multivariate statistics and data-mining techniques has 
further expanded the application of this technology in pedological and agricultural 
sciences. An inherent advantage of visible-near infrared reflective spectroscopy lies in its 
non-destructive nature, ensuring minimal environmental impact (Guerrero et al., 2010). 
As direct calibration of soil properties proves time-consuming, expensive, and subject to 
temporal and spatial variability, the quest for indirect, cost-effective, and swift techniques 
has become a pivotal research focus in pedology (Canbazoglu et al., 2013). In recent 
years, telemetric methods, such as soil spectroscopic technology, have been harnessed 
to enhance analytical efficiency, replacing cumbersome and costly laboratory procedures. 
Spectroscopy involves the preparation of reflective curves within specific wavelength 
ranges to quantify phenomena (Schneider et al., 2011). 

The efficacy of near-infrared reflective spectroscopy rests on the sensitivity of soil organic 
and mineral compounds to visible and infrared wave reflectance. This property has been 
harnessed for agricultural and environmental soil studies. Over the past two decades, the 
application of reflective spectroscopy in pedological sciences has grown, primarily 
focusing on essential soil components, including organic matter, texture, mineralogy, 
nutritional elements, structure, and microbial functions (Hassani et al., 2014). 
Spectroscopy takes two forms: field and imaging. In both modes, electromagnetic energy 
emitted from a light source interacts with a phenomenon, resulting in reflection, 
absorption, and transmission. Spectroscopy enables quantitative analysis of these 
processes. The visible (Vis) and near-infrared (NIR) spectral reflectance of soil spans 
wavelengths ranging from 350 to 2500 nm (Iurian & Cosma, 2014). Furthermore, infrared 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 10-2023 
DOI: 10.5281/zenodo.8429553 
 

Oct 2023 | 35  

spectroscopy, particularly in the near-infrared range, holds potential for identifying various 
soil components. It facilitates the simultaneous estimation of more than 20 soil properties 
through a single calibration, both in the field and in vitro. The spectral reflectance of soil 
is influenced by attributes like humidity, texture, structure, organic matter content, and the 
presence of various minerals (Soriano-Disla et al., 2014). 

Critical soil properties, including organic carbon, mineral types, particle size distribution, 
and carbonate minerals, significantly impact spectral reflectance. For instance, the 
presence of organic carbon results in distinctive absorbent characteristics at specific 
wavelengths due to complex chemical composition (Turhan et al., 2012). The shift in 
spectral curve caused by increased organic carbon content in soil reduces reflectance, 
especially in the visible and near-infrared ranges. Carbonate minerals, such as calcite 
and dolomite, influence reflectance by affecting soil pH and CO2 levels (Hunt et al., 1997). 
Soil particle size distribution also plays a role in spectral behaviour, with larger particles 
absorbing lighter and exhibiting reduced reflectance. The influence of soil constituents, 
such as iron oxides, clay, and organic carbon, on spectral curves and absorbent 
characteristics underscores the significance of spectral behaviour in assessing soil 
properties. 

Given the overlapping nature of soil absorbent waves and their intricate adjustments, 
statistical techniques and robust modeling approaches are essential for extracting 
valuable spectral information. Approaches like Artificial Neural Network (ANN), Partial 
Least Square Regression (PLSR), Principal Components Regression (PCR), and 
Multiplicative Linear (and nonlinear) Regressions (MLR) have been employed to establish 
connections between soil properties and spectral characteristics (Viscarra Rossel & 
Behrens, 2010). Spectral curves have been effectively utilized to estimate various soil 
physical and chemical properties, albeit with varying success (Lagacheri et al., 2008). 
While most studies focus on the estimation of soil chemical properties through spectral 
reflectance, a comprehensive understanding suggests that these properties are intricately 
linked to the soil's solid structure and corresponding levels (e.g., clay, silt, organic matter, 
electrical conductance, and pH), allowing for precise estimation using soil spectral data 
(Warren, 2013a). 

Despite limited research on the application of spectral data for estimating soil properties 
in Odisha, India, this study seeks to evaluate the potential of visible-near infrared 
spectroscopy in predicting select physical and chemical properties of soils in Gajapati 
district, Odisha. 
 
MATERIALS AND METHODS  

Collection soil samples from study area 

The study area encompassed the agricultural plains situated within Gajapati district in 
south Odisha (18052’41.57” N, E 840 08’26.59” E ) from January 2021 to March 2023. 
This region was situated at an average elevation of 250-1030 meters above sea level. 
The annual temperature ranged from a maximum of 45°C to a minimum of 10°C, while 
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the mean annual precipitation ranged between 1000-1200mm. The predominant soil 
textures within this zone were sandy loam with acidic pH.  

A total of 110 soil samples from figure 1 were collected randomly from the study zone, 
spanning depths of 0-30 cm. These soil samples were air-dried and then sieved through 
a 2mm screen. Following sample preparation, various physical and chemical attributes of 
the soil were measured, including percentages of Available Nitrogen, Phosphorus, 
Potassium organic matter, nitrogen, gypsum, sodium, calcium, magnesium. These 
measurements were conducted using standard water and soil analysis techniques. 

 

Fig 1: Soil samples collection area 

Soil's spectral response and the preprocessing of spectral data related to soil 
characteristics 

The spectral reflectance of the soil samples under study underwent calibration through 
the utilization of a spectroscopic device. This process involved 110 soil samples which 
were air dried earlier and sieved through a 2mm sieve, after which their spectroscopic 
curves calibrated across the visible-near infrared ranges (250-400nm) employing 
established spectrometric techniques (Viscarra Rossel, 2008). 

Calibration of the spectral curves was executed utilizing a handheld device with an 
attached lens (8.4°), creating a visual field of 2cm in diameter. Illumination was provided 
by a halogen lamp (150Watt) positioned at a 45-degree angle with respect to the vertical 
axis. To enhance precision during reflectance level calibration, noise reduction, and 
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device calibration during measurements, a single reading was obtained for all three soil 
samples from a blank standard page (reflectance: 100%) positioned in a configuration 
similar to that of the soil samples. These curves were captured using RS3 software 
connected to the device and stored on a portable computer. Each soil sample was 
represented by the mean value of its spectral curves, calculated using View-Spec 
software. Subsequently, these spectral curves were saved as spectral libraries in text file 
format for subsequent analyses. Each recorded spectral curve boasted a spectral 
resolution of 1nm, contributing to a total of 2050 spectral reflectance points (2050 
wavelengths) within the range of 400-2450nm (Dematte et al., 2017). 

The primary objective of pre-processing the spectral data is to eliminate external 
influences and optimize the utilization of spectral data in the approximation process. 
Given the presence of significant spectral distortions (noise) within certain wavelength 
ranges, specifically (350-399 and 2451-2500nm), these wavelengths were excluded from 
modelling efforts (Terra et al., 2015). Similarly, to mitigate noise in soil spectra—such as 
nonlinear behaviour of bands, spectral normalization, filtering, and spectral detection—
various pre-processing techniques were applied to the spectral data using software tools 
such as Parles 3.1 and Unscrambler 10.3. 

Soil calibrated properties and its modelling: 

The calibrated soil properties were employed as the foundation for modelling purposes. 
The initial model was constructed using the Principal Components Analysis (PCA) 
technique, while the second model was developed through the application of the Partial 
Least Squares Regression (PLSR) method. All procedural steps for both methods were 
carried out using the MATLAB and SPSS software platforms, following the guidelines 
provided by Farifteh et al. (2007) and Zheng (2008).  

To assess the accuracy of the models, two key criteria, namely R^2 (coefficient of 
determination) and RMSE (root mean square error), were employed. These metrics 
served as indicators of the precision and effectiveness of the developed models. 

Principal Components Analysis (PCA)  

The utilization of the Principal Components Analysis (PCA) model becomes particularly 
relevant when dealing with a high quantity of variables within a modeling framework. Due 
to the substantial number of variables present, this approach becomes essential for 
parameter reduction (Kodaira & Shibusawa, 2013). The Unscrambler X program was 
used to perform PCA models, scores plots, and loadings plots of each soil order and of 
all soil orders together. The data was created in a tables in excel and then uploaded into 
the program to begin the statistical modeling. Data was then transposed into row sets and 
column sets to create the scores and loadings plots. All zeroes, negatives (if any), or no 
detections (ND), are to be left as blank cells as the Unscrambler X program does not 
recognize negatives. Graphs and plots were designed with colour coordination, 
leverages, and groupings. 

Principle Component Analysis (PCA) is a multivariate statistical technique used to 
analyze relation-ships between a large number of variables and smaller number of 
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objects. In this study, the objects are the soil samples and the variables are the soil 
characterization components (i.e. pH, EC, Fe, OC%). The interrelationship among the 
two is explained through variables called principle components (PC) (Esbensen, 2010). 
The soil variable data is obtained from the characterizations was transformed, auto 
scaled, and evaluated using the PCA to geochemically distinguish soils. Relationships 
among samples was demonstrated by data points in the score plots, and important 
variables loaded on the samples were demonstrated by complementary PC subspace 
distributions in the loading plot. Highly clustered samples in the score plot allows for the 
down-selection of statistically distinguished samples to avoid redundancies in the future 
experiments. Covariance measures the strength of joint variability between two or more 
variables, indicating how much they change in relation to each other. To find the 
covariance we can use the formula: 

𝑐𝑜𝑣 (𝑥1, 𝑥2) = ∑
(𝑥1𝑖 − 𝑥1) + (𝑥2𝑖 − 𝑥2)

𝑛 − 1

𝑛

𝑖=1

 

The value of covariance can be positive, negative, or zeros. 

Positive: As the x1 increases x2 also increases. 

Negative: As the x1 increases x2 also decreases. 

Zeros: No direct relation 

Partial Least Square Root (PLSR) Model 

In this study, we employed Partial Least Squares Regression (PLSR) to estimate soil 
characteristics (anticipated variables) based on spectral indications (predictive variables). 
This choice was made due to the interconnection between diffuse reflectance spectra and 
soil attributes, as previously detailed. Since soil spectra exhibit an overlap of feeble 
overtones and amalgamations of fundamental vibrational bands, it necessitated the 
application of multivariate calibration techniques to accurately ascertain soil 
characteristics. PLSR serves as a broader form of linear multiple regression, effectively 
reducing an extensive array of collinear variables, such as reflectance values, into a 
handful of uncorrelated latent variables or factors Wold et al. (2001) for comprehensive 
PLSR descriptions. 

To pinpoint the most appropriate procedure, we fitted numerous models. The three 
datasets under consideration encompassed unprocessed data, as well as data processed 
through Support Vector Machines (SVM) and Decision Trees (DT). Furthermore, in 
pursuit of simpler and more efficient models, we established separate models for each 
dataset, employing the ensuing subsets as independent variables in PLSR: Visible (VIS 
- 350–700 nm), Near-Infrared (NIR - 701–1000 nm), Short-Wave Infrared (SWIR - 1001–
2500 nm), and the entire range (350–2500 nm). 

We evaluated the resulting models based on criteria essential for constructing a robust 
PLSR model: a minimal number of factors, minimal errors in leave-one-out cross-
validation (CV), and a high R2. Given the limited quantity of soil samples, we implemented 
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the leave-one-out CV procedure to validate the regression models. For each model, we 
calculated R2 and the root mean square error (RMSE) values during CV to assess 
prediction accuracy. We also computed standard error (SE) values during CV. The 
performance-to-deviation ratio (RPD), represented by the standard deviation (SD) to SE 
ratio, was employed to gauge the usability of the calibrated models Williams et al. (2017).  

The findings underscore that a significant proportion of the total variance of bands can be 
accounted for by considering 20 factors. Moreover, the calibration phase resulted in an 
R2-value of 0.89. The outcomes derived from the PLSR regression affirm the expectation 
that this model has demonstrated commendable performance within the realm of soil 
organic minerals estimation. This superiority can be attributed to the involvement of PCA-
dependent variables vis-à-vis PLSR in the band categories. These discoveries align with 
the research conducted by various scholars who have delved into the estimation of soil 
properties, either through manual spectrometers or super-spectral aerial images, yielding 
promising predictions for soil property variables (e.g., Chen et al., 2008; He et al., 2007; 
Zheng et al., 2008; Wang et al., 2010).Many statistical techniques hinge on the 
assumption of a normal distribution for data. Hence, the normality status of each soil 
property was evaluated using the Kolmogorov-Smirnov test, conducted at a significance 
level of 5%, following the calculation of descriptive statistics. For variables exhibiting non-
normal distributions, suitable transformations were applied to achieve normalization. 
Subsequently, the degree of correlation between spectral reflectance values at various 
wavelengths and the physical and chemical properties of the soil was examined using 
Pearson's correlation coefficient. 
 
RESULTS AND DISCUSSION 

Spectral data processing 

Figure 2 presents the average raw spectral reflectance curves for the soils. This graphical 
representation highlights a distinct peak in reflectance within the wavelength range of 
500-700nm. Additionally, four notable absorption features are evident at wavelengths 
990nm, 1414nm, 1915nm, and 2212nm. These absorbent characteristics are associated 
with factors such as free water presence, hygroscopic properties (1414nm), (O-H factor) 
or hydroxyl groups in clay mineral lattice (1915nm), and their interaction with iron, 
aluminum, and magnesium (2212nm) within the clay mineral structure (Clark et al., 1990). 
Several prevailing soil attributes influence the spectral reflectance levels, including soil 
color, moisture content, organic carbon concentration, particle size distribution, and the 
presence of iron and aluminum oxides. Generally, calcium carbonate tends to elevate 
reflectance, while organic carbon and soil moisture have a dampening effect (Stenberg 
et al., 2000). 
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Fig 2: The mean of spectral reflectance of studied soils, position of absorption 
characteristics at wavelengths 990, 1450, 1946, and 2200 nm have been specified on this 
figure including the dimensions, configuration, and distribution of particles and gaps within 
it. These factors play a pivotal role in determining the distance light travels through a soil 
sample, consequently exerting an impact on the observed spectral signatures. 

Table1: Statistical description of soil properties 

Soil chemical properties Max Min Mean Std deviation 

AvlN kg/ha 280 110 195 18.9 

Avl  P (kg/ha) 22.5 18.6 9.19 15.9 

EC(dS/m) 0.89 0.18 0.21 8.5 

pH 6.11 7.3 7.11 0.3 

O/C 0.76 0.30 0.25 0.2 

Avl K (kg/ha) 273 184 240 237 

Ca(mg/l) 1072 30 221 207 

Mg(mg/l) 214 2.7 48 31.4 

Gypsum(%) 33.6 0.02 4.6 8.7 

As shown in Table 1, the soil properties in the studied samples exhibit a wide range of 
variability. The levels of organic matter and total salinity were measured at 0.21 deci-
Siemens/m and 0.76%, respectively. Soil samples contained varying amounts of nitrogen 
(195 kg/ha phosphorus (19.9 kg/ha), and potassium (240kg/ha). The concentrations of 
calcium, magnesium, sodium, and gypsum were determined to be 221 ppm, 48 ppm, and 
4.66%, respectively. Owing to the presence of carbonates, the pH of the studied soils 
ranged from slightly acidic to neutral (6.1-7.3). The soils in Zone-2 exhibited a diverse 
range of textural classes. 
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Partial Least Squares Regression (PLSR) Model for Soil Chemical Properties 

In this study, we employed Partial Least Squares Regression (PLSR) modeling to 
investigate the relationship between various soil chemical properties and the predictor 
variables, aiming to establish predictive models for the given soil attributes. The dataset 
includes a range of soil properties, such as Available Nitrogen (Avl N), Available 
Phosphorus (Avl P), Electrical Conductivity (EC), pH, Organic Carbon (O/C), Available 
Potassium (Avl K), Calcium (Ca), Magnesium (Mg), and Gypsum content. 

Model Performance 

The PLSR model was assessed in terms of its predictive performance using several key 
metrics, including R-squared (R²), Root Mean Square Error (RMSE), and Mean Absolute 
Error (MAE). These metrics provide insight into how well the model captures the variation 
in the observed data. 

Variable Importance: The PLSR analysis allowed us to assess the importance of each 
predictor variable in explaining the variation in soil chemical properties. For instance, the 
model may have identified that pH and organic carbon are the most influential factors in 
predicting certain soil properties, while others may be less important. 

Among the parameters denoted as (r) in the Pearson correlation coefficient table, the 
physical and chemical attributes of soil are associated with the values of spectral 
reflectance within a range of wavelengths spanning from 400nm to 2450nm. In relation to 
this observation, a substantial correlation is observed between calibrated physical and 
chemical characteristics and the values of spectral reflectance within the visible to near-
infrared range. The findings demonstrate that the distribution of soil particle sizes shows 
both positive and negative correlations across various wavelengths. The outcomes, 
depicted in Table 2, present the root mean square error (RMSE) values and coefficient of 
determination (R2) for soil attributes such as clay, silt, sand, and nutrient elements like 
nitrogen, phosphorus, potassium, calcium, and magnesium, corresponding to 
wavelengths 990nm, 1414nm, 1915nm, and 2212nm, respectively. The R2 values for 
estimating the physical and chemical properties of the studied soil range from 0.76 to 
0.95%, with the highest R2 value attributed to gypsum and the lowest to phosphorus 
content. Importantly, the presence of such strong correlations between fundamental soil 
attributes and rates of spectral reflectance has also been noted by other researchers 
(Somers et al., 2010; Bilgli et al., 200). Based on the RPD statistic, the most accurate 
approximations for the suggested regression functions are evident for organic matter 
(RPD=9.34), pH (RPD=4.45), and nitrogen (RPD>2) across all three series-A categories. 
The provided approximations, including clay, silt, gravel, phosphorus, potassium, 
calcium, magnesium, and gypsum (RPD range of 0.01-0.28), indicate a reasonable 
precision of spectral regression functions in predicting the fundamental properties under 
study. 

The validation results for the proposed functions are presented in Figure (3) as dispersion 
diagrams (1:1), which demonstrate the estimation of various soil physical and chemical 
properties against their calibrated values. The R2 values shown in both the figure and 
table indicate the statistical performance of the tested data. Among the foundational 
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properties, attributes such as cation exchange capacity, sand, organic carbon, and silt 
have an average R2 value of approximately 75. Notably, clay demonstrates a particularly 
favourable approximation within the suggested regression functions for estimating these 
properties (McGann et al., 2023) 

 
Fig 3: Diagram of precision for results of validation to calibrated and estimated values 

The figure 3 highlights the soil organic carbon (0.89), available nitrogen (0.92), available 
phosphorus (0.92), potassium (0.78), calcium (0.91), magnesium (0.93), and gypsum 
percentage (0.95) R2-statistic values that stand out for the group of fundamental features. 
These figures represent how well the suggested regression functions approximate these 
specific traits. A recent study by Dematte et al. (2014) found significant agreement 
between estimates made using spectral data and calibrated values of important soil 
properties. For characteristics such as clay (0.83, 4.03), silt (0.32, 5.06), sand (0.7, 5.67), 
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cation exchange capacity (0.64, 1.94 centi-mol.kg), organic matter (0.73, 0.31%), and 
calcium carbonate (0.64, 0.70%), the researchers reported interpretation coefficients (R2) 
and RMSEA. It's described same by Bilgli et al. (2010) also voiced support for leveraging 
spectral data in estimating specific soil physical and chemical attributes. Another study 
conducted by Babaeian et al. (2015) ventured into predicting basic soil properties, along 
with soil hydraulic attributes, utilizing spectral data. Collectively, these researchers 
underscored the potential of soil spectral properties as an effective indirect means to 
estimate the examined physical and chemical attributes with relative accuracy. 

Principal Components Analysis (PCA) models for result analysis 

The Principal Components Analysis (PCA) model is particularly useful when dealing with 
a high number of variables in a modeling context. Given the abundance of variables, this 
technique becomes indispensable for the purpose of reducing the number of parameters, 
as demonstrated by Kodaira and Shibusawa in 2013. Upon conducting a PCA analysis 
on the independent variables or bands, it was observed that out of the initial set of 
variables, 20 principal components were retained. Remarkably, these five components 
managed to encapsulate a significant percentage of the variance within the independent 
variables. In other words, a substantial number of bands were effectively condensed into 
20 components, and these 20 components accounted for a considerable portion of the 
variance across the bands. 

The results obtained through the application of the PCA technique align with those 
obtained using previous methods. However, it is important to note that the predicted 
values did not yield satisfactory regression coefficients across in south Odisha region. 
 
CONCLUSION 

The outcomes of this study underscore the general efficacy of both PCA and PLSR 
models in accurately determining key soil parameters within the provinces of Gajapati, 
Odisha region. Notably, the PLSR model demonstrates heightened precision compared 
to the PCA model. This study evaluated the potential of using soil spectral data within the 
visible-near infrared range (400-2400nm) to estimate specific soil physical and chemical 
properties. The preprocessing curve was delineated for spectral data after its recording 
and calculation of means. The findings underscored the superiority of the method for 
spectral data preprocessing. Considering the strong correlation and significance between 
calibrated soil properties and their spectral reflectance values, regression functions were 
formulated to estimate these properties. Various statistical measures were employed to 
assess the accuracy of these functions, including Root Mean Square Error (RMSE), 
interpretation coefficient (R2), Evaluation of these statistics revealed RMSE values of 27 
and 56.7 for the total range of basic properties studied. Conversely, lower approximations 
were found (RPD=0.01-0.028) for phosphorus, potassium, calcium, magnesium, and 
gypsum, indicating a satisfactory precision of spectral regression functions in predicting 
the studied basic properties. In summation, the findings of this study highlight the potential 
of using soil spectral data as an indirect method for estimating soil's physical and chemical 
properties. However, given the empirical nature of spectral regression functions and the 
spatial-temporal variability of soil properties in diverse zones (like: problematic soils at 
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separate zone shows different spectral behaviour), it is advisable to develop and assess 
these functions for a wider array of zones and soil types. 
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