
Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 28

OPTIMIZING CLOUD PERFORMANCE: A COMPARATIVE ANALYSIS OF

BIRD SWARM AND ANT COLONY ALGORITHMS FOR LOAD

BALANCING

YOGITA YASHVEER RAGHAV *
K R Mangalam University, Gurugram, Haryana. *Corresponding Author Email: ygtraghav@gmail.com

PALLAVI PANDEY

IILM University, Gurugram, Haryana.

Abstract

Load balancing plays a vital role in the realm of cloud computing by efficiently dispersing workloads across
multiple servers or resources, which serves to enhance overall performance, availability, and scalability.
The primary goal of load balancing is to optimize resource utilization and prevent server overload, thereby
optimizing the entire cloud infrastructure. In addressing the challenges associated with workload distribution
and resource utilization optimization in the cloud, researchers have devised algorithms inspired by natural
processes like evolution, swarm behavior, and genetics. This research assesses the performance of two
such algorithms, namely ant colony optimization (ACO) and bird swarm optimization (BSO), with a focus
on load balancing. A comparative analysis is carried out using various parameters, including fitness score,
throughput, resource utilization, and makespan. The findings demonstrate that the BSO algorithm
surpasses the ACO algorithm in terms of fitness score, throughput, resource utilization, and makespan. To
conduct these experiments, the CloudSim simulator is utilized within the NetBeans development
environment.

Keyword: ACO, BSO, Nature Inspired Algorithms, Makespan, Throughput.

1. INTRODUCTION

Cloud computing has brought about a revolution in accessing and utilizing computing
resources for individuals and businesses. Through cloud technologies, users can avail
themselves of diverse resources like databases, storage, networking, infrastructure,
platforms, and applications via the internet. The key advantage of cloud computing lies in
relieving users from the burden ofphysically managing the underlying infrastructure. IaaS
allows for the provisioning of virtualized computing resources, including networking,
storage, and virtual machines. PaaS empowers users to create, manage, and deploy
applications on a platform without worrying about the underlying infrastructure. SaaS
enables users to access software programs such as email, CRM, or ERP without
requiring local installation or updates. Figure 1 depicts the available cloud computing
services. Cloud computing presents numerous advantages, including scalability,
flexibility, and cost-effectiveness. Cloud computing enables users to easily adjust their
computing resources according to changing needs, eliminating the requirement for extra
investments in hardware or infrastructure. Additionally, the pay-as-you-go model ensures
users only pay for the resources they use, resulting in cost savings. This transformative
technology has revolutionized the accessibility and utilization of computing resources for
both individuals and organizations. Its significant impact is projected to continue driving
digital transformation in organizations for the foreseeable future [1].

mailto:ygtraghav@gmail.com

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 29

Figure 1: Cloud computing services

1.1 Load balancing in the cloud computing

 Load balancing is the technique to disseminate the workloads across computing
resources in cloud environments. By using load balancing incoming traffic can be
disseminated among multiple servers to satisfy the frequently changing workload
demand. It enhances the performance and preserves the continuous services. It also
enables the distribution of workloads among multiple geographic regions. In a typical
scenario, a load balancer acts as an intermediary between client devices and multiple
backend servers or applications, distributing incoming traffic among them according to a
predefined algorithm or set of rules. Load balancing helps to prevent any single server or
application from becoming overwhelmed with too much traffic, thus avoiding service
disruptions and downtime [12].

2. LITERATURE STUDY

The stability of processing multiple jobs in a cloud environment must be maintained,
though, and this is a challenging problem. Therefore, it needs a load-balancing method
that distributes the task to the VMs without impacting the system's performance. The
literature on cloud computing environments uses a variety of load balancing approaches.
This section lists the benefits and drawbacks of the existing works done in load balancing
in cloud environment. Literature study with different parameters has been elaborated in
table 1.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 30

Table 1: Comparison of various algorithms through a study

Reference Author (s) Technique Evaluation
Compared

with
Findings

Simulator
used

[2]
Kaushik
Mishra et a

Binary BSO-
inspired load
balancing
technique
using a binary
variant.

Achieve improved
makespan and
utilization by
implementing a well-
suited fitness
function.

Round Robin
There was a 22% improvement in
resource utilization, coupled with
a 33% reduction in makespan.

Cloudsim

[3]
Pradhan, A
et al

Efficient task
scheduling on
cloud
resources was
achieved
through the
implementatio
n of the
LBMPSO
algorithm.

Achieves optimal
efficiency by
Minimizing
makespan And
Maximizing
Resource utilization.

PSO

The proposed algorithm
surpasses existing techniques in
Reducing makespan and
Enhancing resource utilization.

Cloudsim

[4]
Fatemeh et
al.

Non-
preemptive
scheduling
with PSO
Based
approach

Balanced system
Reduces response
time, improves
resource utilization
and performance

Round Robin
(RR) Task
scheduling,

Utilization. Improved Resource
utilization by 22% and Reduced
makespan by 33% compared to
basic PSO.

Cloudsim

[5]
Talha
Akhtar et al.

Particle
utilized PSO
and GSOCK
algorithms

Improved efficiency PSO

GSO surpassed PSO and CK
exhibiting significant performance
enhancements of 71.17%,
74.14% and 84.15% in networks
featuring 50,100 and 200 nodes
during peak load.

Clousim

[6]

B. Mallikar
juna, P.
Venkata
Krishna

Bee Colony
Degree imbalance,
makespan, Task
migration

FCFS and
Dynamic load
balancing
algorithm

The BSO Algorithm outperformed
FCFS and
DLB in reducing makespan, as
verified through the iteration
process assessing VM overload

Cloudsim

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 31

[7]
G.Shobana
et al.

honey bee
Optimized resource
utilization for Faster
response times.

Number of
tasks And
duration of
task

Preemptive Cloudsim Task
scheduling mimics honey bees'
foraging behavior to allocate VMs,
optimizing makespan, throughput,
and datacenter performance.

Cloudsim

[8]
Hinesh
Babu et al.

Inspired by
Honey bee
behaviour

Execution time and
waiting time

WRR, FIFO,
DL B: Loa d
balancing
techniques
Round Robin
and Fuzzy
GSO.

Proposed algorithm balances task
priorities, minimizing waiting time
effectively on machines.

Cloudsim

[9]
Shabnam
Sharma et
al.

BAT algorithm
Job migration and
response time

Round Robin
and Fuzzy
GSO.

Virtual machine job migration
impacts response time during
load balancing.

Parallel
Processing
toolbox” in
Mat lab.

[10]
Gund ipika
Kaur

Adaptive firefly
algorithm
(ADF)

Response time,
processing Time

ACO

ADF algorithm outperformed ACO
by reducing response time for
users and datacenter processing
through
Parameter comparisons.

Cloudsim

[11]
Kethavath
Prem
Kumar

Firefly
Algorithm with
Cuckoo
Search

Migration Time
HBB-LB, DLB,
HDLB and
CMLB

The CS-FA Method migrated a
mere two tasks, whereas the
HDLB method migrated seven
tasks when 40 loads were taken
into account.

Cloudsim

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 32

3. ANT COLONY OPTIMIZATION AND BIRD SWARM OPTIMIZATION

Ant Colony Optimization (ACO) and Bird Swarm Optimization (BSO) are metaheuristic
optimization techniques employed for load balancing in cloud computing. ACO emulates
ant foraging behavior, while BSO mimics the collective movement of bird flocks in search
of food, offering effective strategies for achieving optimal resource allocation and task
distribution in cloud environments. Both algorithms aim to distribute the workload among
available resources while optimizing the allocation of resources to meet demand. They
expand the search space and adapt to changes in workload and resource usage.

3.1 Proposed algorithm using Ant colony optimization

ACO has been successfully applied to solve load balancing problems in cloud computing.
The algorithm uses a pheromone matrix to store information about the quality of solutions
and simulates the foraging behavior of ants, with each ant representing a job orrequest.
The pheromone level and heuristic data guide the movement of the ants from one server
to another, and the pheromone level is updated based on the quality of the ants'
discoveries. The equations used in ACO for load balancing can be divided into
pheromone updating and ant decision-making. The objective is to ensure that no server
is overloaded while minimizing response times and maximizing resource utilization. [13],
[14]. The equations used in ACO for load balancing in cloud computing can be
categorized into two main parts: pheromone updating and ant decision-making.

Pheromone updating equation

τij = (1 - ρ)τij + Δτij (1)

Here, τij represents the pheromone level of the edge between servers i and j, ρ is the
evaporation rate, and Δ τij is the amount of pheromone deposited by the ants that traverse
the edge.

Ant decision-making equation

Pij = τijα × ηijβ / Σ (τikα × ηikβ) (2)

In the equation, the probability of selecting server j from server i is indicated as Pij. The
weighting factors for pheromone level and heuristic information are α and β, respectively.
The heuristic information for the edge connecting server i and j is denoted as ηij [15].

These equations are repeatedly applied to identify the best allocation of virtual machines
to servers that optimizes resource utilization and minimizes response time. As the ants
traverse the search space and update the pheromone matrix, the algorithm converges to
a solution.

3.2 Proposed algorithm using Ant colony optimization

Step 1: Initializing ant positions involves randomly assigning N ants to servers and
allocating tasks in a randomized manner across the servers.

Step 2: Initialize and assign threshold to each node.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 33

Step 3: for each ant

begin for

VM = {VM1, VM2, VM3, . . . , VMm} where VMj (j ∈ {1, 2, . . . , m}) represents the number
of VM on which task Ti (i ∈ {1, 2, . . . , n}) is going to be processed. Create pheromone
table using equation 1 & 2. Calculate Completion time (TTC), make span, Response time
and, Average resource utilization using equation 10,11,12,14.

end for

Step4: for each

Estimate the load using equation 6, 7, 8.

end for

Step 5: Find the state of the vm group using equation 18

While(ULVM!=NULL)

begin loop

Calculate used resource using equation 16 and available resource using equation
17.

End while

Step 6: if CPU utilization >threshold

Then node is overloaded

Step 7: for each ants

Calculate fitness value using equation 13.

Set the current fitness value as the new best position.

If the best overloaded node is chosen, then use equation 19 to determine how
long each VM will take to migrate from the overloaded node else using equations
1, 2, update the position of the ants.

else

find next optimal solution; end if

end for

Step 8: Select VM with minimum migration time;

Step 9: While (OLVM!=null and ULVM!=null) begin loop

Get Task list which need to transfer from selected Overloaded VM;

end while

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 34

Step 10: While (ULVM! =null)

Sort the ants for searching the underloaded node using the routing table; Path
construction using equation 2;

Update pheromone table & routing table using equation 1

if all ants complete their tour then

Calculate fitness values using equation 13.

end if

for each ants,

if Best under loaded node selected then delegate the task to the perfect node;

else

find next optimal solution; end if

end while

Step 11: Update current utilization of CPU

3.2.1 Illustration of Proposed algorithm using ACO by flowchart

Figure 2: Flowchart of proposed algorithm using ACO

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 35

3.2.2 Proposed algorithm using Bird swarm optimization

Inspired by the collective behavior of birds, Bird Swarm Optimization (BSO) is a
metaheuristic algorithm that has found application in diverse optimization problems, such
as load balancing in cloud computing. Utilizing Bird Swarm Optimization (BSO), the
allocation of virtual machines (VMs) to physical servers can be optimized. The goal is to
minimize response time for requests, maximize resource usage, and avoid server
overload simultaneously. The BSO algorithm works by simulating the flocking behavior of
birds, where each bird represents a solution candidate. The algorithm uses three key
factors: Through separation, alignment, and cohesion, the birds are led to the best course
of action. The concept of cohesion ensures that the birds maintain their group structure,
alignment ensures that they move in the same direction, and separation ensures that they
maintain a safe distance from each other. The BSO equations employed in cloud
computing has two categories such as: bird movement and bird decision-making. [16].

Bird movement equation

xij(t+1) = xij(t) + vij(t+1) (3)

where xij(t) is the position of bird i in dimension j at time t, vij(t+1) is the velocity of bird i
in dimension j at time t+1, and vij(t+1) is calculated using the separation, alignment, and
cohesion factors [17-18].

Bird decision-making equation

f(xij) = c1 × f1(xij) + c2 × f2(xij) (4)

where f(xij) is the fitness function of the solution candidate, c1 and c2 are the weighting
factors of the separation and cohesion factors, respectively, and f1(xij) and f2(xij) are the
fitness functions based on the distance between the VMs and the physical servers.

These equations are employed iteratively to iteratively search for an optimal allocation of
VMs to servers, aiming to minimize response time and maximize resource utilization. As
the birds move within the search space, adjusting their velocities based on separation,
alignment, and cohesion factors, the algorithm gradually converges to a solution [19-20].

3.2.2 Proposed algorithm using BSO

Step1: Define birds and initialize bird’s position and initialize the necessary parameters
and Pheromone trails.

Step2: Initialize and assign threshold to each node.

Step3: for each birds

VM = {VM1, VM2, VM3, . . . , VMm} where VMj (j ∈ {1, 2, . . . , m}) represents the
number of VM on which task Ti (i ∈ {1, 2, . . . , n}) is going to be processed.
Calculate Completion time (TTC), make span, Response time and, Average
resource utilization using equation 10,11,12,14.

end for

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 36

Step4: for each

Estimate the load using equation 6, 7, 8. end for

Step5: Find the state of the vm group using equation 18 While(ULVM!=null)

begin loop

Calculate used resource using equation 16 and available resource using equation 17.

End while

Step6: if CPU utilization >threshold Then node is overloaded

Step 7: for each birds,

Calculate fitness value using equation 13.

Set the current fitness value as the new best position.

If the best overloaded node is chosen, then

use equation 19 to determine how long each VM will take to migrate from the overloaded
node

else

end if end for

using equations 3, 4, update the position of the birds. find next optimal solution;

Select VM with minimum migration time;

Step 8: While (OLVM!=null and ULVM!=null)

Get Task list which need to transfer from selected Overloaded VM; end while

Step 9: While (ULVM! =null)

Calculate used resource using equation 16 and available resource using equation 17.

End while

Step6: if CPU utilization <threshold Then node is underloaded

Step 7: for each birds,

Calculate fitness value using equation 13.

Set the current fitness value as the new best position. if Best under loaded node selected
then

delegate the task to the perfect node;

else

find next optimal solution; end if

end for

Step10: Update current utilization of CPU

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 37

Flowchart of proposed BSO load balancing algorithm

Figure 3: Flowchart of proposed algorithm using BSO

3.2.3 Proposed load balancing problem formulations

The proposed load balancing method in this study is motivated by ant colony optimization
and bird swarm optimization. There is a correlation between distributing loads and
foraging in swarms. In the context of the cloud, each bird in the swarm sounds as a
particle. Similar to how birds search for food, the tasks are divided among the VMs.
Overloaded VM behavior is exhibited by empty or already explored food sources.
Therefore, it is necessary to locate a new underload node on which to migrate the tasks
of overloaded nodes. In order to determine which particle is in the best position, the fitness
values of each particle are compared using the fitness function that has been set for the
particular problem. The following definitions are used to define the load balancing problem
[21].

1. Task set: Let a set of task , Task ={ Taskx1 ,Taskx2,Taskx3...............Taskxn } (5)

where Taski , 1<=i<=xn , is ith task with set of instructions.

2. VM Set: Let a set of VM = { Vm1,Vm2,Vm3,.............Vmn } (6)

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 38

where VMj, 1<=i<=mn is deployed under the physical machine or host.

3. VM Load: Load (VMi, t) = ((𝑇𝑎𝑠𝑘,𝑡)) / (SR (VM ,t)) (7)

where t is the task, NT is the number of tasks and SR is the service rate. VM Load
represents the load of a specific virtual machine (VMi) at a given time (t). It is calculated
by dividing the number of tasks (NT) assigned to the VM by its service rate (SR). This
equation helps assess the workload on individual VMs based on the number of tasks and
their processing capabilities [22].

4. Load: = ∑ (𝑖=1) ^𝑚 [(𝐿𝑜𝑎𝑑 (𝑉𝑀𝑖, 𝑡)] (8)

 Where m is the number of VM and t is the task. Load represents the total load in the
system. It is calculated by summing the individual loads of m VMs, denoted as Load (VMi,
t), where i ranges from 1 to m (the total number of VMs). The load of each VM is
determined based on the specific task (t) assigned to it. This equation allows for
aggregating the loads of multiple VMs to assess the overall system load.

5. Host Load: Host Load= [(1/m)] ∑ (i=1) ^m (Load (VMi, t))" (9)

This equation represents the average load on a host. It calculates the host load by
summing the loads of all virtual machines (VMs) running on the host at a given time (t)
and dividing it by the total number of VMs (m). It provides a measure of the overall
workload distribution across the host.

6. Completion Time (CT): task completion refers to the process of completing a given
workload or task that has been assigned to a particular resource (such as a server).

CT (i j) = Finish time (Taskj)- Start time(Taskj) (10)

7. Makespan (MS): This metric demonstrates how long it takes to complete all jobs that
are submitted to the system within a certain time unit. It is the overall amount of time
needed to do all jobs that have been sent to the system. The greatest amount of time the
host needs to run through the data centre is called the system's makespan. The proper
system load balancing is the outcome of the ideal makespan [1].

MS = max {Task CT (i j) | i=1, 2, 3, 4... n; j=1, 2, 3, 4........., m} (11)

8. Response time (RT): Response time in load balancing refers to the amount of time it
takes for a host to respond to a request from a client. In the context of load balancing,
response time refers to the amount of time it takes for a load balancer to receive a request
and forward it to a host, and for the host to process the request and send a response
back to the load balancer [23].

RT = n * Task CT (ij) (12)

9. Fitness score (Fval): In the present study, fitness value has been calculated based on
the makespan (completion time) and virtual machine utilization. Following equation has
been used for finding out fitness value.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 39

 (13)

The makespan represents the total time taken to complete a set of tasks or jobs in a
scheduling problem. It is typically measured as the time elapsed from the start of the first
task to the completion of the last task. A shorter makespan indicates better performance.
Virtual Machine Utilization refers to the extent to which virtual machines (VMs) are utilized
or occupied by tasks or workloads. It can be measured as the ratio of the total time that
VMs are processing tasks to the total time available for processing. Higher utilization
implies better utilization of resources. The fitness value formula combines these two
components by taking the inverse of the product of the makespan and virtual machine
utilization. This means that as the makespan decreases or the virtual machine utilization
increases, the fitness value will increase, indicating a better solution.

10. VM utilization: The number of resources (including memory, CPU, and network
bandwidth) that a virtual machine is using at any particular time is known as VM (Virtual
Machine) utilization. In a cloud computing environment, virtual machines are used to host
applications and services, and monitoring their utilization is important for ensuring that
they are running efficiently and effectively [24,31]. VM Utilization: It represents the overall
utilization of virtual machines in the load balancing scenario.

 (14)

Here i refers to individual VM instances in the load balancing setup. The summation
symbol suggests that you iterate over all VM n: It represents the total number of VM
instances in the load balancing setup instances. Makespan: The makespan is the total
time taken to complete a set of tasks or jobs in a system, m represents the average
utilization of a VM instance or server.

11. Throughput: Throughput typically refers to the rate at which Cloudlets (representing
tasks or workloads) are processed or completed by the simulated cloud infrastructure
within a given time period. It is a measure of the system's ability to efficiently handle and
process tasks, which can include tasks related to data processing, computation, or other
cloud-related operations.

Throughput = Number of Completed Cloudlets / Simulation Time (in seconds) (15)

Higher throughput values indicate that your simulated cloud infrastructure is handling a
larger number of tasks efficiently within the given time frame.

12. Consumed Resources (T⃗_Rused): T⃗_Rused represents the overall amount of
resources consumed by all the tasks in the system. It is computed by summing up the

resource vectors of each individual task (T⃗_i) from i = 1 to n.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 40

 (16)

13. Available Resources (T⃗_Ravail): T⃗_Ravail represents the resources that are still
accessible or available to the underloaded VMs in the system. It is calculated by

subtracting the consumed resources (T⃗_Rused) from the total resources of the
underutilized VMs (T⃗_R).

 (17)

By using these equations, you can determine the consumed resources by aggregating
the resource vectors of all the tasks, and then calculate the available resources by
subtracting the consumed resources from the total resources of the underutilized VMs.
These computations help in understanding the resource utilization and availability in the
system, which can be further utilized for load balancing or resource allocation decisions
[25,30].

14. State of the node: Every node's load will be compared to a threshold value to
determine its condition; if it exceeds the threshold value, the node is overloaded;
otherwise, it is under loaded.

If Load>threshold then overloaded node

else (18)

Underloaded node

End if

15. Migration time (MT): The time it takes for a workload or job to be transferred from one
resource (such a server) to another is referred to as migration time. In the current study,
the virtual machine is being moved from an overloaded node to an under loaded node.
The migration time of a VM in CloudSim depends on factors such as VM size, network
bandwidth, data transfer rate, and VM state. Larger VMs, higher bandwidth, and faster
transfer rates reduce migration time. To calculate the migration time of each virtual
machine, following equation can be utilized:

Migration Time = Data Size / Data Transfer Rate (19)

Where Migration Time refers estimated time taken for the VM migration, measured in
seconds, Data Size represents size of the VM's disk image or memory that needs to be
transferred, typically measured in bytes and Data Transfer Rate refers the estimated rate
at which data can be transferred between the source and destination nodes, usually
measured in bytes per second [26-29].

4. SYSTEM CONFIGURATION IN CLOUD ENVIRONMENT

In Table 2, 3, and 4 system configurations has been shown such as Datacenter, host and
virtual machine configuration.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 41

Table 2: Datacentre Configuration

Attribute’s Name Value

No. of data centres 3

Architecture x86

OS Ubuntu

VMM Xen

Time Zone 10.0

Process Cost 3.0

Memory Cost 0.05

Storage Cost 0.001

Bandwidth Cost 0.1

Table 3: Host Configuration

Attribute’s Name Value

Storage
Number of Host

100000MB
1

Host_MIPS 1000

Host RAM 2048MB

Bandwidth of Host 100000Gbps

Number of Host 1

Table 4: Virtual Machine Configuration

Attribute’s Name Value

No. of VMS 40

Image Size 10000MB

RAM 512MB

MIPS 250

Bandwidth 1000Gbps

VMM_NAME Xen.

VM_PES 1

4.1 Result and Discussion

The present research employed the CloudSim using Netbeans to compare ACO and BSO
algorithms. Various metrics such as Best Fitness Score, Throughput, Resource
Utilization, and Makespan is evaluated using both algorithms, and the results is analyzed.

Based on Figures 8, it is evident that in case of Makespan, BSO surpasses ACO.
According to Figure 8, ACO yields a Makespan of approximately 10.804 seconds, while
BSO achieves a significantly lower Makespan of about 1.8787 seconds for the same
number of tasks. These findings strongly suggest that employing the BSO algorithm can
lead to optimal Makespan results.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 42

Figure 4: Resource utilization of Proposed BSO algorithm

Figure 5: Resource utilization of Proposed ACO algorithm

Figure 4 and 5 demonstrates that BSO utilise resources more efficiently than ACO. Figure
5 shows that the resource utilisation of ACO is[0.51,0.57, 0.63,0.71,0.79] when there are
8, 16, 24, 32, and 40 tasks, while Figure 4 shows that the resource utilisation of BSO is
[0.55, 0.64,0.71,0.77,0.87]% for the same number of tasks. Based on our evaluation, we
can conclude that the BSO algorithm is capable of achieving optimal resource utilization,
making it an effective approach to enhance overall performance.

Figure 6: Throughput of Proposed BSO algorithm

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 43

Figure 7: Throughput of Proposed ACO algorithm

Figure 8: Makespan of ACO and BSO algorithm

Figure 9: Comparison of Results of ACO and BSO both

ACO BSO

VALUE 10.804 1.878785

10.804

1.878785

0

2

4

6

8

10

12

SE
C
O
N
D
S

Makespan of ACO & BSO

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 44

Figure 6 and 7 demonstrates that BSO provide more throughput than ACO. Figure 7
shows that the throughput of ACO is [71.8,76.8, 79.8,83.3,89.7] % when there are 8, 16,
24, 32, and 40 tasks, while Figure 6 shows that the throughput of BSO is [73.8 ,77.8 ,81.8
,85.3 ,91.55] % for the same number of tasks. Results concludes that the BSO algorithm
is capable of achieving optimal throughput, thereby enhancing performance.

Summary and Future Directions

For load balancing in cloud computing systems, ACO and BSO are efficient metaheuristic
optimization techniques. The difficulty of the problem could, however, affect how well they
do. BSO is preferable for issues with smaller search space and fewer variables, whereas
ACO is appropriate for issues with a complicated search space and many variables.
Regarding makespan, throughput, fitness score, and resource use, BSO performed
admirably in this investigation. Both algorithms demonstrate the ability to address diverse
optimization problems and draw inspiration from the cooperative behaviour observed in
social animals. To further improve their performance, a hybrid algorithm that combines
the strengths of ACO and BSO could be developed. For example, a hybrid algorithm could
integrate ACO's pheromone trail updating mechanism with BSO's individual repulsion and
social attraction rules to create a new algorithm that outperforms both individual
algorithms.

Conflicts of Interest: No conflicts of interest.

References

1) Raghav, Y. Y., & Vyas, V. (2019, October). A comparative analysis of different load balancing
algorithms on differentparameters in cloud computing. In 2019 3rd International Conference on Recent
Developments in Control, Automation & Power Engineering (RDCAPE) (pp. 628-634). IEEE

2) Mishra, K., & Majhi, S. K. (2021). A binary Bird Swarm Optimization based load balancing algorithm
for cloud computing environment. Open Computer Science, 11(1), 146-160.

3) Pradhan, A., & Bisoy, S. K. (2022). A novel load balancing technique for cloud computing platform
based on PSO. Journal of King Saud University-Computer and Information Sciences, 34(7), 3988-
3995.

4) Ebadifard, F., & Babamir, S. M. (2018). A PSO‐based task scheduling algorithm improved using a

load‐balancing technique for the cloud computing environment. Concurrency and Computation:
Practice and Experience, 30(12), e4368.

5) Akhtar, T., Haider, N. G., & Khan, S. M. (2022). A comparative study of the application of glowworm
swarm optimization algorithm with other nature-inspired algorithms in the network load balancing
problem. Engineering, Technology & Applied Science Research, 12(4), 8777- 8784.

6) Mallikarjuna, B., & Krishna, P. V. (2018). A nature inspired bee colony optimization model for improving
load balancing in cloud computing. International Journal of Innovative Technology and Exploring
Engineering (IJITEE), 8(2S2), 51 -54.

7) Shobana, G., Geetha, M., & Suganthe, R. C. (2014, February). Nature inspired preemptive task
scheduling for load balancing in cloud datacenter. In International conference on information
communication and embedded systems (ICICES2014) (pp. 1-6). IEEE.

8) LD, D. B., & Krishna, P. V. (2013). Honey bee behavior inspired load balancing of tasks in cloud
computing environments. Applied soft computing, 13(5), 2292-2303.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 45

9) Sharma, S., Luhach, A. K., & Sinha, S. A. (2016). An optimal load balancing technique for cloud
computing environment using bat algorithm. Indian J Sci Technol, 9(28), 1-4.

10) Kaur, G., & Kaur, K. (2017). An adaptive firefly algorithm for load balancing in cloud computing. In
Proceedings of Sixth International Conference on Soft Computing for Problem Solving: SocProS 2016,
Volume 1 (pp. 63-72). Springer Singapore.

11) Kumar, K. P., Ragunathan, T., Vasumathi, D., & Prasad, P. K. (2020). An efficient load balancing
technique based on cuckoo search and firefly algorithm in cloud. Algorithms, 423, 422-432.

12) Raghav, Y. Y., Vyas, V., & Rani, H. (2022). Load balancing using dynamic algorithms for cloud
environment: A survey. Materials Today: Proceedings, 69, 349-353.

13) K. Surjeet, P. Sabyasachi, and A. Ranjan, “Turkish Journal of Computer and Mathematics Education
Vol. 12 No. 11 (2021), 3885- 3898 Research Article A Particle Swarm and Ant Colony Optimization
based Load Balancing and Virtual Machine Scheduling Algorithm for Cloud Computing Environment
A Parti,” vol. 12, no. 11, pp. 3885–3898, 2021.

14) Navtej Singh Ghumman, Rajwinder Kaur."Dynamic combination of improved max-min and ant colony
algorithm for load balancing in cloud system" , 2015 6th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 2015.

15) Jeyakrishnan, V., & Sengottuvelan, P. (2017). A hybrid strategy for resource allocation and load
balancing in virtualized data centers using BSO algorithms. Wireless Personal Communications, 94,
2363-2375.

16) Jean Pepe Buanga Mapetu, Zhen Chen, Lingfu Kong. "Low-time complexity and low-cost binary
particle swarm optimization algorithm for task scheduling and load balancing in cloud computing",
Applied Intelligence, 2019.

17) V. Arulkumar, N. Bhalaji. "Performance analysis of nature inspired load balancing algorithm in cloud
environment", Journal Ambient Intelligence and Humanized Computing, 2020.

18) Sambit Kumar Mishra, Bibhudatta Sahoo, Priti Paramita Parida. "Load balancing in cloud computing:
A big picture”, Journal of King Saud University - Computer and Information Sciences, 2020.

19) Navtej Singh Ghumman, Rajwinder Kaur."Dynamic combination of improved max-min and ant colony
algorithm for load balancing in cloud system" , 2015 6th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 2015.

20) Mishra, R & Jaiswal, A 2012, ‘Ant colony optimization: A solution of load balancing in cloud’,
International Journal of Web &Semantic Technology (IJWesT), vol. 3, no. 2, pp. 33-50.

21) Parida, B. R., Rath, A. K., & Mohapatra, H. (2022). Binary self-adaptive salp swarm optimization-based
dynamic load balancing in cloud computing. International journal of information technology and web
engineering (IJITWE), 17(1), 1-25.

22) Mousavi, S. M., & Gábor, F. (2016). A novel algorithm for Load Balancing using HBA and ACO in
Cloud Computing environment. International Journal of Computer Science and Information Security,
14(6), 48.

23) Xue, S., Li, M., Xu, X., Chen, J., & Xue, S. (2014). An ACO-LB Algorithm for Task Scheduling in the
Cloud Environment. J.Softw., 9(2), 466-473.

24) Dave, A., Patel, B., & Bhatt, G. (2016, October). Load balancing in cloud computing using optimization
techniques: A study. In 2016 International Conference on Communication and Electronics Systems
(ICCES) (pp. 1-6). IEEE.

25) Jeyakrishnan, V., & Sengottuvelan, P. (2017). A hybrid strategy for resource allocation and load
balancing in virtualized data centers using BSO algorithms. Wireless Personal Communications, 94,
2363-2375.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 43 Issue: 11-2024
DOI: 10.5281/zenodo.14064622

Nov 2024 | 46

26) Raghav, Y. Y., & Vyas, V. (2023). ACBSO: a hybrid solution for load balancing using ant colony and
bird swarm optimization algorithms. International Journal of Information Technology, 1-11.

27) Dewan, M., Mudgal, A., Pandey, P., Raghav, Y. Y., & Gupta, T. (2023). Predicting Pregnancy
Complications Using Machine Learning. In D. Satishkumar & P. Maniiarasan (Eds.), Technological
Tools for Predicting Pregnancy Complications (pp. 141-160). IGI Global. https://doi.org/10.4018/979-
8-3693-1718-1.ch008.

28) Gupta, T., Pandey, P., & Raghav, Y. Y. (2023). Impact of Social Media Platforms on the Consumer
Decision-Making Process in the Food and Grocery Industry. In T. Tarnanidis, M. Vlachopoulou, & J.
Papathanasiou (Eds.), Influences of Social Media on Consumer Decision-Making Processes in the
Food and Grocery Industry (pp. 119-139). IGI Global. https://doi.org/10.4018/978-1-6684-8868-
3.ch006.

29) Raghav, Y. Y. & Gulia, S. (2023). The Rise of Artificial Intelligence and Its Implications on Spirituality.
In S. Chakraborty (Ed.), Investigating the Impact of AI on Ethics and Spirituality (pp. 165-178). IGI
Global. https://doi.org/10.4018/978-1-6684-9196-6.ch011

30) Raghav, Y. Y., & Vyas, V. (2023). A Comparative Analysis Report of Nature-Inspired Algorithms for
Load Balancing in Cloud Environment. In Women in Soft Computing (pp. 47-63). Cham: Springer
Nature Switzerland.

31) Raghav, Y. Y., & Kait, R. (2024). Edge Computing Empowering Distributed Computing at the Edge.
In Emerging Trends in Cloud Computing Analytics, Scalability, and Service Models (pp. 67-83). IGI
Global.

https://doi.org/10.4018/978-1-6684-9196-6.ch011

