
Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 43 Issue: 10-2024 
DOI: 10.5281/zenodo.13901548 

 

Oct 2024 | 24  

ORDERED-PHASES OF ASYMMETRIC AB-BLOCK COPOLYMER 

MELTS CONFINED INTO CIRCULAR ANNULAR DISCS: A 

COMPUTATIONAL STUDY 

 

MUHAMMAD JAVED IQBAL * 
Department of Mathematics, Shah Abdul Latif University Khairpur.  
*Corresponding Author Email: mjaved.iqbal@salu.edu.pk,  
ORCID ID: https://orcid.org/0009-0000-1737-1826 

INAYATULLAH SOOMRO 
Department of Mathematics, Shah Abdul Latif University Khairpur. 
Email: inayat.soomro@salu.edu.pk, ORCID ID: https://orcid.org/0000-0001-6423-1009 

USAMA GULZAR 
Department of Mathematics, Shah Abdul Latif University Khairpur. 
Email: usama.gulzar@salu.edu.pk, ORCID ID: https://orcid.org/0009-0007-1353-1272 

MUHAMMAD SALMAN JAVED 
Department of Mathematics, Shah Abdul Latif University Khairpur. 
Email: salman.javed@salu.edu.pk, ORCID ID: https://orcid.org/0009-0003-9207-951X 

 
Abstract 

Over the past decade, nanotechnology has set the industrial world on a new development path. 
Experimental and theoretical scientists are interested in discovering new structures of soft materials with 
potential applications in nanotechnology, including nanoporous storage media, fabrication for 
nanoelectronics, soft robotics, energy harvesting, and biomedical. Mathematicians are predicting novel 
morphologies of diblock copolymer systems through mathematical modelling and computer simulations 
studying nanostructures in the presence of a surface field, which leads to the identification of new 
dimensions of melt. Confinement improves the frustration in nanostructures and leads to new patterns of 
nanoparticles. The computational study of novel nanostructures is done through simulation models. The 
cell dynamic simulation model provides large-scale simulations of nanomaterials quickly and efficiently. 
This computational investigation confines lamellar, cylindrical, and spherical structures into asymmetric 
diblock copolymers (𝑓𝐴 ≠ 𝑓𝐵) in circular annular discs. For the simulations requirement of this model, the 
continuum macromolecule of the diblock copolymers system is discretized on a 17-point isotropic stencil to 
approximate the Laplacian in a polar mesh. FORTRAN codes have been developed for the PDEs included 
in the model. The simulation results are visualized with Open Dx. 

Keywords: Numerical Solutions of PDEs, Finite Difference Method, Polar Mesh System, Discretization, 
Soft Materials, Nanotechnology, Diblock Copolymers, Cell Dynamics Simulation, Confinement. 

 
1. INTRODUCTION 

In this computational study, a template to solve the PDE entanglement in CDS models 
through the finite difference method (FDM) in polar geometries is developed. This aims 
to detect the changes occurring in the system due to self-assembly and phase separation 
under confinement. This study explores how the curvature of circular annular pores and 
the confinement affect the self-organization in diblock copolymers. The study has been 
demonstrated through computational simulations with the CDS model in polar geometry 
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and existing experimental validation. The cell dynamic Simulations predicted lamellar 
structures and concentric rings to grow spontaneously inside pores. The observed 
morphologies based on the curvature effect closely matched experimental results. The 
change of curvature, volume fraction of each block in the system, and confinement are 
key tuning parameters used to predict the order phases of the asymmetric diblock 
copolymer system. The study of materials at the scale of 1 to 100 nanometres is called 
nanoscience (developed by famous physicist Feynman, 1959), based on which 
nanomaterials are produced. This theory was introduced during his lecture, in which he 
proposed building smaller but more efficient machines in real-life systems. Nanoscience 
is a newly emerging field encompassing many scientific disciplines, such as physics, 
chemistry, materials science, biomedical science, computer science, and mathematics. 
Nanomaterials that are very small in size have unique surface-to-volume ratios and 
properties. Taniguchi (1974) coined "nanotechnology" to fabricate soft materials. 
Nanotechnology is the name of manipulating and engineering materials at the nanoscale, 
in which miniaturization ideas are applied. The unique properties of nanomaterials differ 
from their bulk form. These properties provide various applications, including material 
energy harvesting, biotechnology, drug delivery, intelligence, and environmental 
remediation. [1-4]. Soft materials are condensed matter physical materials that are neither 
fully solid nor fully liquid but have properties between these two states. Polymers are one 
of the basic types of soft materials, while other types include surfactants, colloids, and 
liquid crystals [5]. The study focuses on many constraints, including confinement, 
pressure, electric, and magnetic fields. The study of soft matter utilizes different research 
methods. These methods use computer simulations and theoretical models to study self-
assembly, phase separation, rheology, and biological materials [6-7]. Two strategies play 
a crucial role in creating nanodevices: top-down and bottom-up. This manufacturing 
strategy brings numerous benefits, including high throughput, outstanding performance, 
accuracy, stability, scalability, and compatibility, significantly reducing costs. 
Nanolithography, sensors, nanophotonic, nano solar cells, ultrafiltration nanomembranes, 
non-volatile memory, and bit-patterned media are all application examples [8-17].  A linear 
AB-diblock copolymer system is constructed by covalently grafting two homopolymer 
blocks that are thermodynamically incompatible within the same macromolecule, as 
Shown in Figure 1. 

 

Figure 1: AB-Diblock Copolymers 

Self-assembly and phase separation in the diblock polymer system, driven by the 
repulsion between blocks, create different nanostructure patterns. Factors influencing the 
prediction of these new nanostructures include block size, architecture, interactions, and 
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surface field geometry. Experimental and theoretical study of the diblock copolymers 
system reveals that the bulk-phase diagram, shown in Figure 2, contains some ordered 
microphase domains, including parallel lamellae, hexagonal packing of cylinders, body-
centered matrices of spheres, and bicontinuous complex gyroids.  

 

Figure 2: Phase diagram of diblock copolymers system 

A balance between the 𝜒𝑁  and the entropy of mixing tunes the morphology formation in 
diblock copolymer systems. A higher molecular weight in this regard provides better 
control in favor of separation. Each copolymer junction point between different blocks 

introduces an energetic penalty quantified by 𝜒𝑁, where 𝜒 is the Flory-Huggins interaction 
parameter and 𝑁 is the degree of polymerization. Tuning up the value of 𝑁 increases 𝜒𝑁 
which promotes microphase separation. Higher molecular weight chains confer additional 
conformational degrees of freedom at the boundaries between domains. This loss of 
chain entropy leads to higher interfacial tension, which is a significant propulsion for 
microphase separation. Higher molecular weight polymers require more thermal energy 
(higher temperature or longer time) during self-assembly to fully expand and relax into 
the equilibrium structure.  

It confines the system into discrete periodic domains through kinetic trapping. Domain 
spacing and other structural characteristics can be influenced by molecular weight. Block 
copolymer nanostructures can be customized for biomaterial templates and 

nanolithography by tuning 𝑁 [18-22]. The diblock copolymer develops a body-centered 
cubic, spherical crystal structure when the volume fraction of one block is low. In this 
construction, the other block surrounds the spherical domains of one block that are set 
up in a periodic lattice. The structure changes to hexagonally packed cylinders of one 
block embedded in a matrix of the other block as the volume ratio gets closer to each 
other.Perforated lamellar structures, in which the parallel layers are intermittently 
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disrupted by faults or pores filled with the minority block. The Flory-Huggins interaction 

(𝜒), the degree of polymerization (𝑁), and the temperature (𝑇) are parameters used in the 
computational modelling of diblock copolymer systems to build desired structures and 

attributes. The Flory-Higgins interaction parameter (𝜒) measures the thermodynamic 
interaction between two blocks of a diblock copolymer. High levels of encouraging the 
establishment of orderly phases and a predictor for phase separation are also indicated. 
Blocks tivide into higher-value systems, producing phases with distinct borders like 

lamellar, cylindrical, or spherical forms. The degree of polymerization (𝑁) is the number 
of repetition units in each copolymer block. By altering the overall size and structure of 

the copolymer chains, 𝑁 affects the formation and stability of various phases.  Longer 

polymer chains (𝑁 increases) can affect phase behaviour and lead to specific phase 
transitions or morphologies. The ordered phases and stability in diblock copolymer 

systems are influenced by temperature (𝑇).  

Phase transitions brought on by temperature variations can alter the ordered structures 
that form (for instance, lamellar to gyroid transitions). Thermal energy can alter or 
enhance interactions between polymer blocks to change the phase morphology and 
transition between ordered phases. Greater T encourages the disordered mixed state 

through increased entropy and improved chain mobility. Decreasing temperature 𝑇 also 
decreases chain flexibility, increasing macrophase phase separation. To improve this 

microphase separation, the degree of segregation 𝜒𝑁 is increased by tuning up 𝜒 or 𝑁.  

In this context, the quantity 𝑁 measures the equilibrium between the repulsion forces and 
the entropy brought on by chain conformation. An order-disorder transition occurs when 

𝜒𝑁 ~ 10.5 − 15, which creates distinct periodic structures. The system underwent a 
dramatic transition and entered a condition characterized by robust segregation above a 

higher threshold, 𝜒𝑁 ~ 30 − 40. The system transforms from disordered 
spheres/cylinders to ordered structures like lamellae or gyroids that reduce the interfacial 

area by increasing 𝜒𝑁 through 𝜒, 𝑁 or decreasing 𝑇 [23-26]. 

1.1 Confinement in Diblock Copolymers  

Confinement in diblock copolymers is a powerful method for preparing nanostructures 
with precise shapes. This surface field offers various applications in nanotechnology, 
including creating templates, nanoporous materials, artificial muscles, and other 
responsive materials [27]. Confinement affects how the diblock copolymer self-
assembles. Diblock copolymers can be used for this by encapsulation in a thin film, 
porous template, or other confined area. The confined boundary can significantly affect 
the morphology of self-assembled nanostructures. In diblock copolymers, confinement 
affects the temperature at which the order-disorder transition occurs. Block copolymers 
that typically exhibit a second-order order-disorder transition in the absence of 
confinement may instead show a first-order order-disorder transition when subjected to 
confinement [28]. Several nanotechnology applications are possible for entrapment in 
diblock copolymers. For example, containing diblock copolymers can create templates 
for producing nanowires and nanotubes. In addition, they can be used to produce 
nanoporous materials with regulated pore size and morphology. Confined diblock 
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copolymers can also produce synthetically responsive materials [29]. Diblock copolymers 
are confined in attractive walls to investigate the effects of different compartment sizes 
and geometries on self-assembly. In soft confinement systems, conformal walls study 
tunable confinement forces without completely restricting movement like rigid walls, which 
provide adjustable repulsive stresses to the chains [30-32]. Cell dynamics models add 
confinement to one or two-dimensional periodic boundary conditions that resemble thin 
films or cylinders. As a result, morphologies are constrained, and interfaces are 
introduced, competing with microphase separation. Different patterns, such as multilayers 
perpendicular to surfaces or parallel cylinders, are created. The degree of confinement is 
controlled by varying the film thickness or cylinder diameter about the bulk spacing. 
Strong confinement produces pattern faults and disturbs periodic order [33]. Feng and 
Ruckenstein utilized self-consistent field theory to simulate diblock copolymers inside 
cylindrical pores with various diameters. Contrary to bulk, cylindrical confinement limits 
the development of morphology to structures with a thin interface parallel to the pore 
walls, suppressing typical bulk phases below a specific diameter. As a result of the conflict 
between bulk segregation and interface effects, distinctive restricted structures like rings 
and helices are created.  

There are clear phase transitions that are diameter-sensitive. Near interfaces, 
confinement results in increased chain stretching costs, symmetry breakdowns, and form 
distortions. Constrictions controlled by surface segregation preferences can kinetically 
sustain non-equilibrium morphologies and enhance order-disorder transitions. Insight into 
composition, nanostructure, and confinement relationships at the molecular level is 
provided via simulations [34]. When diblock polymers are confined, the frustration 
between the blocks in the small space leads to the disruption of equilibrium and the 
formation of newly ordered phases. With drug delivery and separation media applications, 
confinement within pores changes structural frustration through pore size to generate 
unique morphologies. As a result of a mixture of entropy, frustration, and interface effects 
that disrupt symmetry, melts in confinement display more complicated shapes [35-36]. A 
deeper understanding of how confinement affects block copolymer behaviour is provided 
by introducing simulation methods such as self-consistent field (SCF) theory and coarse-
graining. Xiang et al. have described the effects of confinement on block copolymers and 
their implications for material patterning and design. [37].  

A detailed examination of the universal and copolymer-specific parameters affecting 
confinement-based morphological control is provided by Yang et al. Using simulations, 
they look into the morphologies of cylindrical diblock contained in cylindrical pores. It 
identifies the components of composition, pore size, and system-specific factors affecting 
constrained self-assembly. Parallel cylinders along pores form above a threshold; 
complicated structures like helices form below it. Similar to bulk phases, confinement 
causes distinct topological modifications. It is demonstrated that there is only sometimes 
a connection between composition, fraction, and architecture under confinement. 
Composition, architecture, and defect generation regulate chain stretching and interface 
energies to balance bulk and surface segregation. Restrictive nanostructures' 
experimental observations are interpreted and forecasted using insights [38]. 
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Confinement of soft materials in polar, cylindrical, or spherical geometries affects the 
material's physical properties by changing the arrangement of the soft material chains. 
The orientation of the domains results in the rearrangement of defects that differentiate 
the material from other materials due to changes in stiffness, flexibility, and other 
properties [39]. Soomro et al. use mathematical models to provide molecular insight into 
self-assembly under multi-axial geometric constraints. In contrast to simple cylinders, 
concentric inner/outer surfaces are introduced in SCF simulations of cylinder-forming 
diblock copolymers within annular pores. Calculations provide asymmetric nested or 
concentric cylinder topologies that are stable under confinement by considering block 
repulsion, stretching, and surface interactions using a free energy functional. In contrast 
to annular thickness/bulk spacing, phase space maps suggest preferred topologies based 
on confinement, composition, and surface affinities.  

Compared to atomistic approaches, simulation captures morphologies that are 
empirically challenging across a wider parameter range. The use of numerous 
confinement geometries to self-assemble complicated structures is made clear by 
insights [40].  

Transforming a physical problem into a boundary-fitted curvilinear coordinate system can 
often simplify the analysis by eliminating the need to deal with irregular or arbitrarily 
shaped boundaries. In such a coordinate system, the coordinate lines follow the 
boundary’s shape, making it easier to impose boundary conditions and solve the 
governing equations. In polar coordinates, the coordinate lines are circular, which is well-
suited for problems with circular symmetry [41-44].  

Iqbal et al. focused on curved geometries and predicted new patterns and defects in 
lamellae forming system [45], cylindrical forming system [46], and spherical forming 
system [47] by discretization of a macromolecule of diblock copolymers with 9-point 
stencils constructed by finite difference numerical scheme in polar geometry.  

The lamellae formulation is also presented by modification of the discretizational scheme 
into a diagonal discretization scheme [48]. Cell dynamic simulation's algorithm and flow 
chart are modified, coded, and executed for curved geometries and confinement [49].   
 
2. MATERIALS AND METHODS 

Grid-point methods are numerical techniques used to solve partial differential equations 
(PDEs) by discretizing the domain of the problem into a grid. Due to its 2nd-order partial 
differential equation nature, the Laplace equation is challenging to solve analytically for 
complicated geometries. FDM reduces the PDE to a set of algebraic equations that may 
be solved on a grid by approximating the derivatives as finite difference quotients. 
Different expressions for the derivatives are developed to choose an accurate 
approximation, and their truncation errors are examined [50-56]. A Cartesian coordinate 
system is unsuitable for this purpose since it is uniform and orthogonal everywhere. 
Therefore, curvilinear coordinates, shown in Figure 3, generate grids with non-uniform 
spacing, allowing grid points to be clustered or spread out as needed. In confinement, the 
polar coordinate representation is particularly suited to analyzing block copolymer 
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systems that exhibit preferential radial ordering. Both theory and interpretation are made 
simpler by it. A discretized grid approximates the polar coordinate system's partial 
differential equations (PDEs) using the Finite Difference Method (FDM) discretization in 
the polar mesh. This technique enables us to solve PDEs and estimate derivatives 
numerically by dividing the polar domain into discrete points  

 

Figure 3: Discretization in polar mesh 

In the left half of Figure 3, a 17-point stencil is presented on the polar grid, while the 
discretization procedure in the polar mesh system is in the right half of the figure.  The 
point 𝑢𝑖,𝑗  is an average point of the nearest four points approximated for Laplacian in polar 

mesh along the radial and radian axis. We Discretize the domain into a polar grid of discs 

with discrete radial points 𝑟1, 𝑟2, … 𝑟𝑁 and angular points 𝜃1, 𝜃2, … 𝜃𝑀. The computational 
domain and boundary conditions are defined. The internal radius is 𝑟𝑎 is fixed to avoid 
singularity issues. The external radius of the polar disc is 𝑟𝑏 to get various pore sizes 𝑑 of 

the polar disc. The radial domain is graduated into ∆𝑟 step size for periodic boundary 
conditions and the radian domain is graduated in ∆𝜃 step size for reflected boundary 
conditions.  

2.1 Simulations Model 

The choice of simulation method depends on the specific questions being addressed and 
the computational resources available. Different methods have different strengths and 
weaknesses. TDGL is a coarse-grained, continuum-based method approximating free 
energy with time-dependent Ginzburg-Landau functionality. Molecular Dynamics models 
(MD) and Monte Carlo models (MC) are more atomistic approaches that explicitly 
simulate the motion of individual molecules or particles. Dissipative Particle Dynamics 
(DPD) models and Bond Fluctuation (BD) models are mesoscale models that observe the 
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motion of a group of particles instead of an individual particle. Self-consistent field theory 
(SCFT) is a mean-field model that observes the free energy of a system during the 
transition of particles in soft materials.  This model is computationally efficient and 
consistent with the equilibrium properties of the diblock copolymers system. Its time-
dependent extension is DSCFT, which is used to observe the flow effect [57-64]. Due to 
its computational efficiency and reduced cost, the CDS model is used to observe the self-
assembly and phase transition in the diblock copolymers for larger time steps.  CDS 
model is a coarse-grained method that neglects some of the molecular-level details of the 
system; however, the accuracy of CDS can be improved by incorporating more detailed 
information about the system, such as the interactions between different types of polymer 
segments [65]. The model is simplified by lattice representation while retaining the basic 
physics of microphase separation in copolymers. This enables efficient simulation of quite 
empirically relevant systems. Variables involved in Lattice can represent A-rich or B-rich 
cells by taking values of 1 or -1, respectively. They change throughout the simulation to 
describe changes in spatial structure. A short-range attraction between like blocks and a 
long-range attraction between opposite blocks are two common interactions that can 
occur. By limiting domain expansion, they compete to promote microphase separation 
[66-69]. 

 

Figure 4: Algorithm of cell dynamics simulations 
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The flow chart of the CDS model is presented in Figure 4. In the initial stage, a continuum 
macromolecule of diblock copolymers consists of two polymer blocks. A 2D lattice is 
defined with periodic boundary conditions as the simulation domain and structure lattice-
like 'cells' within this space. Random cell concentrations are generated based on the 
overall block concentrations. In the subsequent phase, the molecule is approximated for 
Laplacian, involved in the system, through isotropic discretization using a 17-point stencil 
in polar geometry. After converting all equations involved in the system, we produce 
FORTRAN code to run the simulation. The system's free energy is computed utilizing a 
formulation akin to Flory-Huggins, accounting for entropy, repulsive interactions, and 
chain stretching. Upon calculating the chemical potential at each lattice point based on 
this free energy formulation, dynamic steps are taken, invoking the Cahn-Hilliard 
dynamics equation to drive the system according to these chemical potentials.  

A lattice cell and one of its neighbors are chosen randomly. The alteration in free energy, 
resulting from exchanging a small amount of material between the cells, is then 
computed. Following this, the exchange is carried out with a probability contingent upon 
the change in free energy. Concentration profiles, structure factors, domain sizes, and 
similar aspects are periodically outputted to facilitate self-assembly analysis. 
Confinement is introduced by imposing specific lattice site occupancy constraints. The 
simulation proceeds until a stable morphology is attained  

2.2 Cell Dynamics Simulations 

A diblock copolymer system consists of a macromolecule of two blocks A and B 

composed of 𝑁 polymer chains. The length of each block is represented by 𝑁𝛼  (𝛼 = 𝐴 or 
𝛼 = 𝐵) containing 𝑓𝛼 monomers, 𝛼 is a species of monomers in the form of 𝑓𝛼𝑍 statistical 

segments with 𝑙 𝑛
1

2 scale length (𝑙 is Kuhn length). In the diblock copolymer system, the 

local volume fraction 𝜙𝛼 refers to the concentration of a block in a specific area of the 
material relative to the total volume. This parameter specifies how much of the block is in 
a particular region or material phase during simulation. In microphase separation, these 
two blocks are from distinct domains, and the spatial volume fraction helps to characterize 
these domains' size, shape, and distribution.  

Theoretical models and simulations of diblock copolymers make it possible to account for 
local variations by local volume fraction in predicting the material's morphology, 
mechanics, and self-assembly behaviors. The global volume fraction is the total volume 
of the simulation box. It is defined in the initial setup of the simulation. It represents the 
overall size of the system and quantifies the overall properties of the system. 

The local volume fractions are:  

𝜙𝐴 =  
1

𝜌0
∑ ∫ 𝑑𝜁𝛿{𝑟 − 𝑟𝑖

𝐴(𝜁)}
𝑓𝐴

0
𝑁
𝑖=1 .                (1) 

𝜙𝐵 = 
1

𝜌0
∑ ∫ 𝑑𝜁𝛿{𝑟 − 𝑟𝑖

𝐵(𝜁)}
𝑓𝐵

0
𝑁
𝑖=1 .  (2) 

𝜌0 is density of melt and 𝑟𝑖
𝛼(𝜉) are chain conformations. The chain is parameterized by 𝜁 

with its length  0 < 𝜁 < 𝑁 (𝑁 = 𝑁𝐴 + 𝑁𝐵) and  𝛿 is an incompressibility constraint [70-71].  
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An order parameter 𝜓 (𝑖, 𝑡) is found for cell 𝑖 at time 𝑡 in a discrete lattice cell dynamics 

simulation. The order 𝜓 is computed for the AB diblock copolymer using the difference 
between the local and global volume fractions: 

𝜓 =  𝜙𝐴  − 𝜙𝐵  +  (1 −  2𝑓) .       (3) 

In (1), 𝜙𝐴 and 𝜙𝐵  are local volume fractions of A and B monomers respectively: 

𝑓 =
𝑁𝐴

𝑁𝐴 + 𝑁𝐵
.          (4) 

Considering the difference between local and global volume fractions allows us to explore 
the spatial distribution of polymer chains, capture the effects of chain packing and 
interactions, and gain insights into the phase behaviour and self-assembly of diblock 
copolymer systems. 

Any change in the order parameter over time must meet the requirements of the following 
equation to provide continuity: 

𝜕𝜓(𝑟,𝑡)

𝜕𝑡
= −𝛻 ·  𝑗(𝑟, 𝑡)          (5) 

This equation assumes that 𝑗(𝑟, 𝑡) is a flux that is linearly connected to the local chemical 
potential: 

𝑗(𝑟, 𝑡)  =  −𝑀𝛻𝜇(𝑟, 𝑡)         (6) 

The functional derivative of the free energy in the following way gives the chemical 
potential: 

𝜇(𝑟, 𝑡) =  
𝛿𝐹[𝜓]

𝛿𝜓
 (7) 

The Cahn-Hilliard-Cook (CHC) equation describes the order parameter's time evolution: 

𝜕𝜓

𝜕𝑡 
=  𝑀𝛻2 (

𝛿𝐹[𝜓]

𝛿𝜓
) +  𝜂𝜉 (𝑟, 𝑡)         (8) 

In this equation (5),  𝑀 = 1 represents the mobility coefficient, η is the noise amplitude, 
and 𝜉 (𝑟, 𝑡) is a Gaussian white noise with zero mean and unit variance. In this 

investigation, it is observed that 𝜂𝜉 (𝑟, 𝑡) does not significantly impact the simulation 
results. For this reason, the noise term is not programmed in the simulations.  

In the derivation of the free energy, all the terms have a physical meaning. Even though 
the free energy is of course mesoscopic and coarse-grained and thus it is only 
an approximation [72]. 

The free energy functional 𝐹[𝜓(𝑟)] ÷ 𝑘𝑇 is represented by the equation: 

𝐹[𝜓(𝑟)] =  ∫ 𝑑𝑟 [𝐻(𝜓) +
𝐷

2
|𝛻𝜓|2] +  (

𝐵

2
) ∫ 𝑑𝑟 ∫ 𝑑𝑟′𝐺(𝑟 − 𝑟′)𝜓(𝑟)𝜓(𝑟′) (9) 

𝐹[𝜓(𝑟)] has two terms. The first part ∫ 𝑑𝑟 [𝐻(𝜓) +
𝐷

2
|𝛻𝜓|2] of 𝐹[𝜓(𝑟)] is identical to the 

Ginzburg–Landau free energy used to describe phase separation in a binary mixture. The 
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second part 𝐹[𝜓(𝑟)] of 𝐹[𝜓(𝑟)] represents the long-range interactions arising from the 
connectivity of different blocks in a copolymer [73]. 

D is a positive constant for the diffusion coefficient. 𝐺(𝑟 −  𝑟′) is a green function for 
Laplacian, satisfies ∇2𝐺(𝑟 −  𝑟′) = −𝛿(𝑟 −  𝑟′) [36].  

The parameter B introduces a chain-length dependence on the free energy 𝐻(𝜓) [74], 
given as  

𝐻(𝜓) =  [(−
𝜏

2
) +  (

𝐴

2
) (1 −  2𝑓)2] 𝜓2 +  𝑣(1 −  2𝑓)𝜓3 +  (

𝑢

4
) 𝜓4    (10) 

The temperature parameter is represented by τ, while A v, and u are phenomenological 

constants. 𝜏′ =  −𝜏 +  𝐴(1 −  2𝑓)2, 𝐷, and 𝐵 can be expressed in terms of the degree of 
polymerization 𝑁, the segment length 𝑏, and the Flory-Huggins parameter 𝜒, which is 
inversely proportional to temperature. The χ-parameter is used to measure the relative 

strength of the repulsion (𝜒 > 0) and attraction (𝜒 < 0)  between the same types of 
segments. The expressions for τ', D, and B are given by: 

𝜏′ =  (−
1

2𝑁
) (𝑁𝜒 −

 𝑠(𝑓)

4𝑓2(1−𝑓)2)        (11) 

𝐷 =
𝑏2

48𝑓(1−𝑓)
          (12) 

𝐵 =  
9

4𝑁2𝑏2𝑓2(1−𝑓)2         (13) 

Numerical evolution of CDS equation (2) by finite difference scheme for order parameter 
is given below. 

𝜓(𝒏, 𝑡 + 1) = 𝜓(𝒏, 𝑡) − {〈〈Г(𝒏, 𝑡)〉〉 − Г(𝒏, 𝑡)} + 𝐵𝜓(𝒏, 𝑡) − 𝜂𝜉(𝒏, 𝑡).  (14) 

Where  Г(𝒏, 𝑡) = 𝑔(𝜓(𝒏, 𝑡)) − 𝜓(𝒏, 𝑡) + 𝐷[〈〈𝜓(𝒏, 𝑡)〉〉 − 𝜓(𝒏, 𝑡)].   (15) 

{〈〈Г(𝒏, 𝑡)〉〉} − Г(𝒏, 𝑡)  is isotropized discrete Laplacian [38] in polar and 𝑖 = (𝑖𝑟 , 𝑖𝜃) are 

polar coordinates with  ∆t time steps for order parameters. 

In case of confinement  

Г(𝑛, 𝑡) = 𝑔(𝜓(𝑛, 𝑡)) − 𝜓(𝑛, 𝑡) + 𝐷[〈〈𝜓(𝑛, 𝑡)〉〉 − 𝜓(𝑛, 𝑡)] − 𝑠𝑖  (𝑟).            (16) 

Here 𝑠𝑖 (𝑟) = ℎ𝑖 × ∅𝑖 × 𝛿𝑛𝑟=1 𝑜𝑟 𝑛𝑟=𝑁𝑟 .  

The strength of the mutual interaction of walls and blocks is ℎ𝑖. The Kronecker delta, 
represented by 𝛿𝑛𝑟=1 𝑜𝑟 𝑛𝑟=𝑁𝑟 . This equation is the product of the total segments ℎ𝑖, the 

local volume fraction ∅𝑖, and the Kronecker delta function 𝛿𝑛𝑟=1 𝑜𝑟 𝑛𝑟=𝑁𝑟 . This equation is 

used to calculate the local segment density at the 𝑟 position of the specified 𝑖 block. The 
Kronecker delta function ensures that the fractional density contribution comes only from 
cells at the boundaries of the system  (𝑛𝑟 = 1 𝑜𝑟 𝑛𝑟 = 𝑁𝑟), so that these cells are more 
likely to be interfaces or boundaries between different blocks.  

The discretization of the free energy function 𝑔(𝜓) is given by: 

𝑔(𝜓) = [1 + 𝜏 − 𝐴(1 − 2𝑓)2]𝜓 − 𝑣(1 − 2𝑓)𝜓2 − 𝑢𝜓3.              (17) 
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We know the Laplacian in polar form 

𝑢𝑟𝑟 +
1

𝑟
𝑢𝑟 +

1

𝑟2 𝑢𝜃𝜃 = ∇2                                                (18) 

Here we take 0 ≤ 𝜃 ≤ 2𝜋 with 𝜃𝑗 = 𝑗∆𝜃 for 𝑖 = 1,2,3, … , 𝑛𝑟 and 𝑟𝑎 ≤ 𝑟 ≤ 𝑟𝑏 with  𝑟𝑖 = 𝑟𝑎 +

𝑖∆𝑟 for 𝑗 = 1,2,3, … , 𝑛𝜃. The finite difference approach for the Laplacian used in the CDS 
model in the polar mesh accomplishes the discretization of a continuum molecule of the 
diblock copolymer system into discrete set-off points. Periodic boundary conditions are 
applied to the radian domain, reflective boundary conditions are applied to the radian 
domain, and symmetric boundary conditions are applied to the confinement domain.  

2.3 The Isotropic Formulation of  〈〈Г(𝒏, 𝒕)〉〉 − 𝝍(𝒏, 𝒕) 

In a polar grid, the Laplacian operator 𝛻2 exhibits a distinct structure compared to 
Cartesian coordinates due to the incorporation of radial and angular variables (𝑟, 𝜃). To 
approximate the second-order partial derivatives of the Laplacian, a finite difference 
stencil is employed. Achieving an isotropic and rotationally invariant approximation in the 
polar grid requires a 17-point stencil. These 17 points comprise the central point (𝑖, 𝑗), six 
immediate neighboring points along the radial direction, six neighboring points along the 
angular direction, and four mixed neighboring points. These points will be approximated 
for radial and radian rates of change. The macromolecule of diblock copolymers in the 
form of 17 discrete points is shown in Figure 5.  

First-order approximation of the partial derivative for the 3 points (𝑖 − 1, 𝑗 + 1  ), (𝑖, 𝑗 + 1  ) 
and (𝑖 + 1, 𝑗 + 1  ) along the radial axis, given as: 

𝜓𝑟 =
1

2(∆𝑟)
{𝜓𝑖+1,𝑗+1 − 𝜓𝑖−1,𝑗+1}.                                    (19) 

First-order approximation of the partial derivative for the 7 points (𝑖 − 3, 𝑗), (𝑖 − 2, 𝑗), 
(𝑖 − 1, 𝑗),  (𝑖, 𝑗), (𝑖 + 1, 𝑗) ,  (𝑖 + 2, 𝑗) and  (𝑖 + 3, 𝑗) along the radial axis, given as: 

𝜓𝑟 =
1

60(∆𝑟)
{−𝜓𝑖−3,𝑗 + 9𝜓𝑖−2,𝑗 − 45𝜓𝑖−1,𝑗 + 45𝜓𝑖+1,𝑗 − 9𝜓𝑖+2,𝑗 + 𝜓𝑖+3,𝑗}  (20) 

 

Figure 5: 17-Point discrete molecule of diblock copolymers system 
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First-order approximation of the partial derivative for the 3 points (𝑖 − 1, 𝑗 − 1  ), (𝑖, 𝑗 − 1  ) 
and (𝑖 + 1, 𝑗 − 1  ) along the radial axis, given as: 

𝜓𝑟 =
1

2(∆𝑟)
{𝜓𝑖+1,𝑗−1 − 𝜓𝑖−1,𝑗−1}.        (21) 

Adding (19), (20) and (21), we get the first-order approximations of the partial derivatives 
along the radial axis, given as: 

𝜓𝑟 =
1

180(∆𝑟)
[{−𝜓𝑖−3,𝑗 + 9𝜓𝑖−2,𝑗 − 45𝜓𝑖−1,𝑗 + 45𝜓𝑖+1,𝑗 − 9𝜓𝑖+2,𝑗 + 𝜓𝑖+3,𝑗} + 30{𝜓𝑖+1,𝑗+1 −

𝜓𝑖−1,𝑗+1} + 30{𝜓𝑖+1,𝑗−1 − 𝜓𝑖−1,𝑗−1}].        (22) 

Second-order approximation of the partial derivative for the 3 points (𝑖 − 1, 𝑗 + 1  ), 
(𝑖, 𝑗 + 1  ) and (𝑖 + 1, 𝑗 + 1  ) along the radial axis, given as:  

𝜓𝑟𝑟 =
1

(∆𝑟)2 {𝜓𝑖+1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖−1,𝑗+1}       (23) 

Second-order approximation of the partial derivative for the 7 points (𝑖 − 3, 𝑗), (𝑖 − 2, 𝑗), 
(𝑖 − 1, 𝑗),  (𝑖, 𝑗), (𝑖 + 1, 𝑗) ,  (𝑖 + 2, 𝑗) and  (𝑖 + 3, 𝑗) along radial axis, given as. 

𝜓𝑟𝑟 =
1

180(∆𝑟)2 {2𝜓𝑖−3,𝑗 − 27𝜓𝑖−2,𝑗 + 270𝜓𝑖−1,𝑗 − 490 𝜓𝑖,𝑗 + 270𝜓𝑖+1,𝑗 − 27𝜓𝑖+2,𝑗 + 2𝜓𝑖+3,𝑗}  (24) 

order approximation of the partial derivative for the 3 points (𝑖 − 1, 𝑗 − 1  ), (𝑖, 𝑗 − 1  ) and                   
(𝑖 + 1, 𝑗 − 1  ) along the radial axis, given as.  

𝜓𝑟𝑟 =
1

(∆𝑟)2 {𝜓𝑖+1,𝑗−1 − 2𝜓𝑖,𝑗−1 + 𝜓𝑖−1,𝑗−1}       (25) 

Adding (23), (24), and (25) gives the second-order approximations of the partial 
derivatives along the radial axis, given as. 

𝜓𝑟𝑟 =
1

540(∆𝑟)2 [{2𝜓𝑖−3,𝑗 − 27𝜓𝑖−2,𝑗 + 270𝜓𝑖−1,𝑗 − 490 𝜓𝑖,𝑗 + 270𝜓𝑖+1,𝑗 − 27𝜓𝑖+2,𝑗 + 2𝜓𝑖+3,𝑗} +

180{𝜓𝑖+1,𝑗−1 − 2𝜓𝑖,𝑗−1 + 𝜓𝑖−1,𝑗−1} + 180{𝜓𝑖+1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖−1,𝑗+1}] (26) 

Second-order approximation of the partial derivative for the 3 points (𝑖 − 1, 𝑗 + 1), 
(𝑖 − 1, 𝑗) and                   (𝑖 − 1, 𝑗 − 1) along the radian axis, given as.  

𝜓𝜃𝜃 =
1

(∆𝜃)2 {𝜓𝑖−1,𝑗+1 − 2𝜓𝑖−1,𝑗 + 𝜓𝑖−1,𝑗−1}            (27) 

Second-order approximation of the partial derivative for the 7 points (𝑖, 𝑗 − 3), (𝑖, 𝑗 − 2), 
(𝑖, 𝑗 − 1),  (𝑖, 𝑗), (𝑖, 𝑗 + 1) ,  (𝑖, 𝑗 + 2) and  (𝑖, 𝑗 + 3) along radial axis, given as. 

𝜓𝜃𝜃 =
1

180(∆𝜃)2 {2𝜓𝑖,𝑗−3 − 27𝜓𝑖,𝑗−2 + 270𝜓𝑖,𝑗−1 − 490 𝜓𝑖,𝑗 + 270𝜓𝑖,𝑗+1 − 27𝜓𝑖,𝑗+2 + 2𝜓𝑖,𝑗+3}  (28) 

Second-order approximation of the partial derivative for the 3 points (𝑖 + 11, 𝑗 + 1), 
(𝑖 + 1, 𝑗) and (𝑖 + 1, 𝑗 − 1) along the radian axis, given as.  

Second-order approximation of the PDE for the points given in Figure 2.9, along the radial 
axis, given as: 

𝜓𝜃𝜃 =
1

(∆𝜃)2
{𝜓𝑖+1,𝑗+1 − 2𝜓𝑖+1,𝑗 + 𝜓𝑖+1,𝑗−1}       (29) 
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Adding (27), (28) and (29), we get.  

𝜓𝜃𝜃 =
1

540(∆𝜃)2 {2𝜓𝑖,𝑗−3 − 27𝜓𝑖,𝑗−2 + 270𝜓𝑖,𝑗−1 − 490 𝜓𝑖,𝑗 + 270𝜓𝑖,𝑗+1 − 27𝜓𝑖,𝑗+2 +

2𝜓𝑖,𝑗+3} + 180{𝜓𝑖−1,𝑗+1 − 2𝜓𝑖−1,𝑗 + 𝜓𝑖−1,𝑗−1} + 180{𝜓𝑖+1,𝑗+1 − 2𝜓𝑖+1,𝑗 + 𝜓𝑖+1,𝑗−1} (30) 

Now for the approximation of Laplacian involved in the CDS model, we put (22), (26) and 
(30) in (18) and get.  

∇𝜓
2 =

1

540(∆𝑟)2 [{2𝜓𝑖−3,𝑗 − 27𝜓𝑖−2,𝑗 + 270𝜓𝑖−1,𝑗 − 490 𝜓𝑖,𝑗 + 270𝜓𝑖+1,𝑗 − 27𝜓𝑖+2,𝑗 + 2𝜓𝑖+3,𝑗}

+ 180{𝜓𝑖+1,𝑗−1 − 2𝜓𝑖,𝑗−1 + 𝜓𝑖−1,𝑗−1} + 180{𝜓𝑖+1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖−1,𝑗+1}]

+
1

180(𝑟∆𝑟)
[{−𝜓𝑖−3,𝑗 + 9𝜓𝑖−2,𝑗 − 45𝜓𝑖−1,𝑗 + 45𝜓𝑖+1,𝑗 − 9𝜓𝑖+2,𝑗 + 𝜓𝑖+3,𝑗}

+ 30{𝜓𝑖+1,𝑗+1 − 𝜓𝑖−1,𝑗+1} + 30{𝜓𝑖+1,𝑗−1 − 𝜓𝑖−1,𝑗−1}]

+
1

540(𝑟∆𝜃)2 {2𝜓𝑖,𝑗−3 − 27𝜓𝑖,𝑗−2 + 270𝜓𝑖,𝑗−1 − 490 𝜓𝑖,𝑗 + 270𝜓𝑖,𝑗+1 − 27𝜓𝑖,𝑗+2

+ 2𝜓𝑖,𝑗+3} + 180{𝜓𝑖−1,𝑗+1 − 2𝜓𝑖−1,𝑗 + 𝜓𝑖−1,𝑗−1} + 180{𝜓𝑖+1,𝑗+1 − 2𝜓𝑖+1,𝑗

+ 𝜓𝑖+1,𝑗−1} 

Implies  

〈〈Г(𝑛, 𝑡)〉〉 − 𝜓(𝑛, 𝑡) = 𝜔 ∑ ∑ [{
1

540(∆𝑟)2 {2𝜓𝑖−3,𝑗 − 27𝜓𝑖−2,𝑗 + 270𝜓𝑖−1,𝑗 + 270𝜓𝑖+1,𝑗 − 27𝜓𝑖+2,𝑗 +
𝑛𝜃
𝑗=1

𝑛𝑟
𝑖=1

2𝜓𝑖+3,𝑗} +
1

3(∆𝑟)2 {𝜓𝑖+1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖−1,𝑗+1 + 𝜓𝑖+1,𝑗−1 − 2𝜓𝑖,𝑗−1 + 𝜓𝑖−1,𝑗−1}} +
1

𝑟
{

1

180(∆𝑟)
{−𝜓𝑖−3,𝑗 +

9𝜓𝑖−2,𝑗 − 45𝜓𝑖−1,𝑗 + 45𝜓𝑖+1,𝑗 − 9𝜓𝑖+2,𝑗 + 𝜓𝑖+3,𝑗} +
1

6(∆𝑟)
{𝜓𝑖+1,𝑗+1 − 𝜓𝑖−1,𝑗+1 + 𝜓𝑖+1,𝑗−1 − 𝜓𝑖−1,𝑗−1}} +

1

𝑟2 {
1

540(∆𝜃)2 {2𝜓𝑖,𝑗−3 − 27𝜓𝑖,𝑗−2 + 270𝜓𝑖,𝑗−1 + 270𝜓𝑖,𝑗+1 − 27𝜓𝑖,𝑗+2 + 2𝜓𝑖,𝑗+3} +
1

3(∆𝜃)2 {𝜓𝑖+1,𝑗+1 +

𝜓𝑖−1,𝑗−1 + 𝜓𝑖−1,𝑗+1 + 𝜓𝑖+1,𝑗−1 − 2𝜓𝑖+1,𝑗 − 2𝜓𝑖−1,𝑗}}] − ∑ ∑ 𝜓𝑖,𝑗
𝑛𝜃
𝑗=1

𝑛𝑟
𝑖=1      (31) 

Here, the waiting factor for neighboring nearest neighboring points is  𝜔 = [
54(𝑟∆𝑟∆𝜃)2

49{(∆𝑟)2+(𝑟∆𝜃)2}
]   

In this numerical scheme, 𝑖 is taken as a discrete variable for radial step and 𝑗 is taken as 
a discrete variable representing an angular step in a polar grid system. However, 𝑟𝑖 ∈ ℛ 
and 𝜃𝑗 ∈ ℛ. For pore size, 𝑑 = |𝑟𝑎 − 𝑟𝑏|, 𝑟𝑎 is the interior radius of the disc and 𝑟𝑏 is the 

exterior radius of the disc. The interior radius is set to fix at 𝑟𝑎 = 3 or 𝑟𝑎 = 5 or 𝑟𝑎 = 7 to 
avoid issues of singularities and the size  𝑟𝑏 varies according to the size of the pore.  
 
3. SIMULATIONS RESULTS  

The primary objective of the simulation is to enhance our understanding of phase 
separation and compositional control. We examine diblock copolymer systems within 
annular circular pores of varying sizes to attain this goal. Employing polar grids for 
discretizing the diblock copolymer system and envisioning diverse patterns within the 
annular circular pores, we conduct simulations of the diblock copolymer system using the 
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CDS model in this study. The outcomes from the 2D computational analysis serve to 
identify key variables and constraints influencing morphological control within constrained 
geometries. This paper explores two-dimensional computational simulations of diblock 
copolymers using polar coordinates within circular annular pores. We model different pore 
shapes and sizes, encompassing lamellae, cylinders, and spheres. The findings offer 
insights for three-dimensional investigations, shedding light on phase separation and 
morphological control within a confined two-dimensional domain. The simulations employ 

reflective boundary conditions along the radial axis, utilizing ∆𝑟 = 0.1 and   ∆𝑡 = 0.1. 
Within the domain 0 ≤ 𝜃 ≤ 2𝜋, periodic boundary conditions are implemented by setting                                      
∆𝜃 = 0.017453292. The simulation is bifurcated into two categories: first, studying the 
binary fluid, and second, simulating the creation of lamellar, cylindrical, and spherical 
shapes within pore systems, both with and without confinement. 

3.1 Binary Fluid simulation and predictions 

We simulate a binary fluid inside a system of annular circular discs. Instead of treating 
this mixture as a self-assembling diblock copolymer, we model it as two fluids devoid of 
interaction. Binary fluid simulations in pore geometry serve as a test case to validate our 
computational method, confirming the expected occurrence of macrophase separation in 
a simple mixture without microphase separation or self-assembly. 

Table 1: CDS parameters for binary fluid 

𝑨 𝑩 𝑫 𝒖 𝒗 𝒇 𝝉 Time steps 

1.50 0 0.70 0.38 2.30 0.48 0.36 1000000 

The parameter B is responsible for the self-organization of diblock copolymers into 

microstructures and microphase separation. The parameter is set 𝐵 = 0 to get 
macrophase separation instead of microphase separation.   

 

Figure 6:   Binary fluid system at one million-time steps with internal radius (a)  

𝒓𝒂 = 𝟑, (b)  𝒓𝒂 = 𝟓 , (c)  𝒓𝒂 = 𝟕 and pore size 𝒅 = 𝟐 

We simulate the program to a one-million-time step and predict the result of the simulation 
that the continuum molecule of the diblock copolymers system is equally distributed 
between two subdomains, red-rich (polymer A) and blue-rich (polymer B).  
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3.2 Asymmetric Lamellae forming simulation with neutral walls 

In the second phase of the simulation, we analyze the morphology of asymmetric lamellae                     

(𝑓𝑎 ≠ 𝑓𝑏) within a diblock copolymer system arranged in a circular-annular disc. This study 
investigates diverse pore sizes employing a coarse-grained simulation approach. For this 

purpose, the global volume fraction is set at  𝑓𝐴  =  0.48, 𝑓𝐵  =  0.52 and temporal 
parameter 𝜏 = 0.36. Table 3.2 shows all parameters and their values used in the CDS 
model to computationally model the asymmetric lamella forming system. 

Table 2: Simulation parameters for asymmetric Lamellae in polar discs with 
neutral walls 

𝑨 𝑩 𝑫 𝒖 𝒗 𝒇 𝝉 𝜶 Time steps 

1.50 0.02 0.70 0.38 2.30 0.48 0.36 0 1000000 

The simulation results for Lamellae forming systems in annular discs are obtained by 
increasing the pore size, achieved by varying the outer pore radius 𝑟𝑏 while keeping the 

inner pore radius 𝑟𝑎 fixed at 3. 

 

Figure 7: Lamellae forming system at various time steps, including t=10 in (a), 
t=100 in (b), t=1000 in (c), t=10000 in (d), t=100000 in (e), and t=1000000 in (f) 

Figure 7 illustrates the simulation of the Lamellae forming system with a grid size of   30 ×
60 by setting internal radius 𝑟𝑎 = 3, external radius 𝑟𝑏 = 6, and pore size 𝑑 = 3. The 
natural inclination to minimize interfacial energy between the immiscible blocks is the 
driving force behind the formation of lamellar domains in the diblock copolymer within the 
confines of the annular pore. In the initial time steps, discrete domains didn't form, and 
the blocks remained disordered and mixed due to their chemical incompatibility. However, 
as the simulation progressed, the blocks began to phase-separate, arranging into distinct 
phases to achieve a lower energy state. The lamellar domains gradually oriented 
perpendicular to the pore walls during this process. As the simulation moved through 
intermediate time steps, the blocks further rearranged, forming more ordered domains, 
causing the lamellae to expand in thickness and width. In the later time steps, well-defined 
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and organized lamellar domains emerged, clearly demarcating the A and B blocks. 
Eventually, the system reached an equilibrium state, characterized by alternating A and 
B lamellae spanning the annular pores, forming an ordered configuration and occupying 
the available space. Various factors, including the relative volume fractions of the blocks, 
pore size, and the strength of interactions between the blocks and the pore walls 
influenced the thickness and number of lamellae formed. 

 

Figure 8:  Lamellae forming system in circular annular discs with neutral walls at 

𝒓𝒂 = 𝟑 with pore size  𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and  𝐝 = 𝟏𝟎 in (i) 

In Figure 8, Investigations are made into the lamellar morphology of the asymmetric DBC 

system in the annular disc with the size of the pore 𝑑 =  2,3,4,5,6,7,8,9, and 10. The pore's 
internal radius, 𝑟𝑎 = 3, and its outward radii 𝑟𝑏, vary from 5 to 13. Figure 8 shows the 
simulation results of an asymmetric diblock copolymer system in a circular annular pore. 
A look at pore size 𝑑 = 2, shows that we have y-shaped and v-shaped lamellae parallel 
to the radial axes of the pore with some single lamellae strips between them. Some 

perforations are also visible near the inner circumference of the pore. In pore size 𝑑 = 3 
the deformation process begins and perforated holes and u-shaped lamellae are seen 
changing into y-shaped Lamellae.  

Parallel stripes form on the right and left sides of the disc, and an increase in the 
frequency of perforations is observed in the lower half of the disc. An Increase in pore 

size to 𝑑 = 4  zigzag-shaped lamellae due to distortion in a perforated hole. Lengthened 
and skewed y-lamellae and alternating v-lamellae are prominent in pore size 𝑑 = 5. As 
the pore size increases from 5 to 6,7,8,9 and 10, the length of different lamella patterns 
and their skewness also increase. An increase can be seen in perforated holes with an 
increasing number of parallel stripes near the inner and outer walls of the pore due to 
deformation and formation along tilted curved strips. Some dimples are also present. We 
can see open-ended parallel strips in bigger pore sizes. Some holes, oblique ridges, 
oblique longitudinal y-shaped lamellae, and alternating u and y lamellae are seen 
between them. 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 43 Issue: 10-2024 
DOI: 10.5281/zenodo.13901548 

 

Oct 2024 | 41  

 

Figure 9: Lamellae forming system in circular annular discs with neutral walls at 

𝒓𝒂 = 𝟓 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 

𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The lamellar morphology of the asymmetric diblock copolymers (DBC) system in the 

annular disc with pore size 𝑑 =  2,3,4,5,6,7,8,9, and 10 is investigated in figure 9. The 
pore's internal radius, 𝑟𝑎 = 5 , and its outer radius, 𝑟𝑏, ranges from 7, 8, 9, 10, 11, 12, 13, 14 
to 15. In pore size 2, parallel stripes with y-shaped lamellae are observed in the upper 
half of the disc In the lower half, the same stripes are interspersed with u-type patterns, 
and some holes are also clearly visible.  

By increasing the pore size to 3, the deformation of the perforated forms longitudinal 
stripes. Also, the y and reflected y patterns converge, with a linear band appearing in the 
middle. By increasing the pore size to 4, parallel strip lamellae form in the disc's upper 
and lower halves.  

The deformation of perforated holes finds dimple-like patterns. The number of perforated 
holes also increases in the disc's lower half. Due to the polar geometry, increasing 
distortion in pore sizes 5, 6, and 7 results in forming new perforated holes along with 
skewness in the parallel stripes. Some y-rays and reflected y-rays are seen together, with 
u- and v-patterns forming on the inner and outer sides of the pore.  

Figure 10 shows investigations into the lamellar morphology of asymmetric diblock 

copolymers (DBC) system in an annular disc with diameters of pore  𝑑 =  2,3,4,5,6,7,8,9, 
and 10. The pore's internal radius, 𝑟𝑎 = 7, and its outer radius 𝑟𝑏, can range from 
9, 10, 11, 12, 13, 14, 15, and 16 to 17. Looking at the simulation results, the disc pore size 
2 shows parallel stripes and a 𝑦 pattern between them. Looking at the simulation results, 
pore size 2 of the disc shows parallel stripes and a 𝑦 pattern between them. 
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Figure 10:  Lamellae forming system in circular annular discs with neutral walls at 

𝒓𝒂 = 𝟕 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

These parallel strips are accompanied by 𝑉 patterns and 𝑦 and reflected 𝑦 pairs patterns. 

At pore size 3, the 𝑣 pattern combined with a single stripe gives a 𝑤 morphology. The 
reflected 𝑦 morphology and the single stripe appear to form a 𝐻-type pattern. Due to the 
effect of curvature, perforated holes begin to form, which seem to increase in number with 
increasing pore size. At pore size 4 of the disc, the radial stripes on the upper half and 

lower half appear to change to wavy stripes with elongated 𝑦-patterns in between. Also 
prominent are the 𝑢 and 𝑣 patterns. At pore size 5, 𝑚-shaped patterns increase in length 
and parallel stripes change to curved stripes. At pore size 6, we see smaller parallel strips 

joining a longitudinal strip. The outer wall appears to be 𝑢-shaped and parallel strips are 
formed near the inner wall. At pore sizes 7, 8, 9 and 10, u and y-type patterns are 
prominent along the inner and outer walls, while mixed patterns are observed in the 
middle, which increases in length with increasing pore size. They also have skewness 
due to curvature.  

3.3 Asymmetric Lamellae forming simulation with Attractive walls 

In this simulation phase, the encapsulation of diblock polymers into circular annular pores 
significantly distorts the microdomain structure by attractive interactions between a block 
and the pore walls. The main reason for this is surface affinity. The interactive strength 

dependence is expressed as a parameter 𝛼, the higher the value, the higher the surface 
strength.  

Table 3: Simulation parameters for asymmetric Lamellae in polar discs with 
attractive walls 

𝑨 𝑩 𝑫 𝒖 𝒗 𝒇 𝝉 𝜶 Time steps 

1.50 0.02 0.70 0.38 2.30 0.48 0.36 0.2 1000000 
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The volume fraction of Block A is set at 𝑓 = 0.48 and a parameter  𝛼 = 0.2 for the surface 
affinity of asymmetric diblock copolymers confined in annular circular pores. As the 
surface preference strength increases from zero to 0.2, the morphology evolves through 
various stages to form a tilted lamellar pattern along the walls. Moreover, at this high 
surface preference, morphologies, including rings, toroids, and labyrinth patterns, can 
emerge depending on the relative volume fractions and pore size. The ratio of the 
copolymer radius of gyration to pore size affects the ability to shape under confinement. 
A higher ratio allows for more traditional structures. 

Figure 11 shows the simulation results of an annular circular pore for an asymmetric 

diblock copolymer system with attractive walls (𝛼 = 0.2 ). The inner radius 𝑟𝑎 is 3 and the 
outer radii 𝑟𝑏 are 5, 6, 7, 8, 9, 10, 11, 12 and 13 according to the pore sizes 𝑑 = 2, 3, 4, 5, 
6, 7, 8, 9 and 10. In the simulation results at pore size 2, perforated holes are observed 
and dumbbells formed by these holes and parallel stripes in the disc in the radian domain. 
At pore size 3, dumbbell patterns appear to change to vertical diagonal stripes, and 
perforated pores appear to increase. Pore size 4 shows an increase in vertical tilted 
stripes in the upper and lower halves of the disk. At pore size 5, deformation of the 
dumbbells and stripes causes parallel stripes, which converge near one end, leading to 

w and y pattern shapes. At pore size 6, a 𝑚-shaped morphology is obtained, and new 
perforated holes appear to form. Increasing the pore size further to 8,9 and 10, results in 

longitudinal and oblique 𝑦, 𝑢, 𝑤 patterns. Perforated holes are seen to transform into 
open-ended strips, and new holes are also seen to form due to increased curvature and 
confinement strength leading to new equilibrium phases. 

 

Figure 11: Lamellae forming system in circular annular discs with attractive walls 

at 𝒓𝒂 = 𝟑 in pore size  𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 
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The modelling results of an annular circular pore for an asymmetric diblock copolymer 

system with attractive walls (𝛼 = 0.2 ) are shown in Figure 12. The pore size d is 2, 3, 4, 
5, 6, 7, 8, 9 and 10, the inner radius 𝑟𝑎 is 5 and the outer radii 𝑟𝑏 are 7, 8, 9, 10, 11, 12, 
13, 14 and 15. At pore sizes 2 and 3, the concentric circles are obtained. 

Increasing the pore size to 4 increases the curvature, and increasing the degree of 
segregation causes deformation of these concentric circles. Bands parallel to the pore 
appear to split into pieces, and some bands parallel to the radial axes appear to form. 

Perforated holes are found at pore size 5, and dumbbell-type specimens gradually 
increase. Due to the effects of curvature and confinement, the patterns formed in the 
angular domain appear skewed in the radial domain. Perforated holes at pore size 6 and 
dumbbells form y-patterns due to mechanical deformation with longitudinally elongated 
patterns.  

At pore size 7, the 𝑦 pattern deforms and meets the open-ended lamellae, forming a 
mixed 𝑤 pattern. At pore sizes 8, 9 and 10, due to the increase of inner radius, 

confinement strength and curvature effects, oblique lamellar 𝑦 and 𝑤 patterns are seen 
with diagonally parallel stripes of lamellae. 

 

Figure 12: Lamellae forming system in circular annular discs with attractive walls 

at 𝒓𝒂 = 𝟓 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

These lamellae are distinct on the outer and inner sides of the disc, while mixed patterns 
are seen between these walls.  
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Figure 13: Lamellae forming system in circular annular discs with attractive walls 

at 𝒓𝒂 = 𝟕 in pore size   𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in 

(e), 𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The modelling results of an annular circular pore for an asymmetric diblock copolymer 

system with attractive walls (𝛼 = 0.2 ) are shown in Figure 13. According to the 𝑑 pore 
size 2, 3, 4, 5, 6, 7, 8, 9 and 10, the fixed internal radius of the pore is  𝑟𝑎 = 7, the outer 
radii of the pore are 7, 8, 9, 10, 11,12,13,14,15,16 and 17. At pore size 2, concentric 
circles are observed, which deform into pore-parallel and vertical stripes at pore size 3. 
Microporous pores are also found. As the curvature increases at pore size 4, these porous 
pores are seen to deform into longitudinally growing dumbbells and lamellas parallel to 
the radial axes. Some vortices also appear and an increase in the frequency of holes is 

observed. At pore size 5, 𝑦-patterns are found along with long loops changing to 𝑚-
patterns. Some 𝑦-patterns are also fseen and the frequency of holes increases. At pore 

size 6, y-patterns are combined with long stripes, changing to 𝑚-patterns. At pore size 7, 
the old perforated holes deform and intersect the y-lamellae and form new M-lamellae. 
The strips increase in length and form a curve shape but elongate in size. Some 

alternating 𝑣 patterns can be seen. Due to the rise in inner radius, confinement strength, 
and curvature effects, oblique, lamellar y and w patterns with diagonally parallel lamellae 
stripes can be visible at pore sizes 8, 9, and 10. On the outer and inner edges of the disc, 
these lamellae are distinct, and between these walls, mixed patterns can be seen. Some 
dumbbell patterns and tilda patterns are also available. 

3.4 Cylindrical forming simulation with neutral walls 

In this phase of simulation, Diblock copolymer cylindrical morphology is studied in circular 
annular nano disc without geometric confinement in one and two dimensions. The pore 
geometry simulation produced results after one million time steps. Table 3.4 shows the 
parameters and their values for the cylindrical forming system. 
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Table 4: Cylindrical morphologies in polar discs with neutral walls at  𝒓𝒂 = 𝟑 

𝑨 𝑩 𝑫 𝒖 𝒗 𝒇 𝝉 𝒓𝒂 𝜶 

1.50 0.02 0.50 0.58 1.50 0.40 0.30 3 0 

The inner pore radius is set at 3, and the outer pore radius is varied to increase the pore 
size in diblock copolymer lamellae-forming systems in annular circular discs. Figure 14 
depicts the cell dynamic simulation for the cylindrical forming system with a grid size of 

30 × 60 × 1 (𝑟𝑎 = 3), external radius 𝑟𝑏 = 6, and pore size 𝑑 = 3. As the domains continue 
to grow and orient symmetrically throughout the film thickness, a hexagonal packing of 
cylinders develops. 

 

Figure 14: Cylindrical forming system at various time steps, including t=10 in (a), 
t=100 in (b), t=1000 in (c), t=10000 in (d), t=100000 in (e), and t=1000000 in (f) 

The simulation results of the cylindrical morphology in an annular circular disk for neutral 
walls are shown in Figure 15. The study is done on the pore sizes d= 2, 3, 4, 5, 6, 7, 8, 9 

and 10, set 𝑟𝑎 = 3 and the outer radius 𝑟𝑏 are 5, 6, 7, 8, 9, 10, 11, 12 and 13. Cylindrical 
systems indicate that the microdomains align with logarithmic spiral lines within the pores 
in terms of pore geometry.  

Furthermore, within this geometric design, the microdomains adopt a hexagonal packing 
configuration. Cylinders in the system are shown with pore size d = 2 and are located on 
the logarithmic spiral lines close to the origin. As the pore size increases, these 
logarithmic spiral lines become wider. This reflects the effect of geometry caused by the 
increasing pore size s of the annular circular disc.   
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Figure 15: Cylindrical forming system in circular annular discs with neutral walls 

at 𝒓𝒂 = 𝟑 in pore size  𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 

𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

This demonstrates that as the system's pore size increases, spiral arms grow broader 
and cylinders align on spiral rays in the pore geometry. The experimental work 
demonstrates that the confinement's frustration disrupts the microdomains' natural 
hexagonal packing. 

 

Figure 16: Cylindrical forming system in circular annular discs with neutral walls 

at 𝒓𝒂 = 𝟓 in pore size  𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

Figure 16 shows the simulation of cylindrical morphologies in an annular circular disk with 

neutral walls. Now  𝑟𝑎 = 5 and the outer radius is determined by pore size (2, 3, 4, 5, 6, 
7, 8, 9 and 10), which is 7, 8, 9, 10, 11, 12, 13, are 14 and 15.  
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The annular circular disc simulation results for a cylindrical shape with neutral walls are 

shown in Figure 17. The internal radius is fixed  𝑟𝑎 = 7 and the pore sizes 𝑑 are 2, 3, 4, 
5, 6, 7, 8, 9 and 10. The outer radii are 9, 10, 11, 12, 13, 14, 15, 16 and 17 respectively. 
In addition, the pore system's exterior radius expands at different values and the pore 

system's inner radius rises at two fixed values, 𝑟𝑎 = 5 and 𝑟𝑏 = 7. In the pore geometry of 
both pore systems, similar patterns of the cylindrical forming system are observed. It has 
been discovered that the cylindrical forming systems were packed with spiral lines in the 
pore geometry as a result of the curvature effect. Hexagonal packing of microdomains is 
also observed within the pore structure. 

 

Figure 17: Cylindrical forming system in circular annular discs with neutral walls 

at 𝒓𝒂 = 𝟕 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

3.5 Cylindrical forming simulation with attractive walls 

The system being studied is a diblock copolymer that naturally forms cylindrical structures 
in melt. It is confined inside a circular annulus pore (ring-shaped pore with an inner and 
outer circular wall). One of the circular walls is preferentially attracted to one block of the 
D-block copolymer.  

The reason for this is the difference in the volume fraction of the blocks and the interaction 
strength. The reason for this is the difference in the volume fraction of the blocks and the 
interaction strength. This means one wall is more compatible with one block than the 

other. The strength of this preferential attraction is 𝛼 = 0.2. 𝛼 is a measure of how strongly 
one wall interacts with the preferential block. The confinement and preferential attraction 

are in the radial 𝑟 direction only.  

This means the pore constrains the system between two circular walls, and one wall 
attracts specifically to one block, both effects being along the radius of the annulus only. 

The parameter 𝑑 =  𝑟𝑏– 𝑟𝑎 is pore size.   
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Fix internal radii  𝑟𝑎 = 3, 5 or 7 and tune external radii 𝑟𝑏  for various pore sizes. For the 
first set of results, the simulation also includes a wall attracting specifically to one of the 
monomer types, acting only along the radial direction within the annular pore space. The 
morphological behaviour of diblock copolymers in a one-dimensional circular annular 
confinement using our CDS simulations is investigated.  

The findings show that microdomains are oriented by surface preference to align in 
concentric circular rings around the centre of the pore. However, some microdomains are 
packing along asymmetric spiral lines inside the pore shape. Packing dissatisfaction, 
which results from the interaction of curvature and confinement factors warping the usual 
spiral structure. In simple terms, the simulation with one surface attracting to monomer A 
causes the small domains inside to stack up in concentric rings rather than spiral shapes.  

 

Figure 18: Cylindrical forming system in circular annular discs with attractive 

walls at 𝒓𝒂 = 𝟑 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 
in (e), 𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results of an annular circular disc for cylindrical morphology with attractive 

walls (𝛼 = 0.2 ) are shown in Figure 18. The pore sizes 𝑑 are tuned at 2, 3, 4, 5, 6, 7, 8, 
9 and 10. The internal radius  𝑟𝑎 = 3 and the outer radii are ranged from 5 to 13. At pore 
size 𝑑 =  2, cylinders are arranged in two rings of concentric circles. At pore size 𝑑 = 3, 
system contained 3 concentric circles of microdomains.  

Cylinders are arranged in 4 concentric rings in the pore system of dimension d = 4. We 
observe an increase in the number of cylindrical domain rings in the pore system as pore 
size d increases. Ten rings of cylinders with a pore size of 10 are present. 
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Figure 19: Cylindrical forming system in circular annular discs with attractive 

walls at 𝒓𝒂 = 𝟓 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 
in (e), 𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results of an annular circular disc for cylindrical morphology with attractive 

walls (𝛼 = 0.2 ) are shown in Figure 19. The pore size 𝑑 is tuned from 2 to 10, the internal 
radius  𝑟𝑎 = 3 and the outer radii are 7, 8, 9, 10, 11, 12, 13, 14 and 15. 

 

Figure 20: Cylindrical forming system in circular annular discs with attractive 

walls at 𝒓𝒂 = 𝟕 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 
in (e), 𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results of an annular circular disc for cylindrical morphology with attractive 

walls (𝛼 = 0.2 ) are shown in Figure 20. The pore sizes 𝑑 is set at 2, 3, 4, 5, 6, 7, 8, 9 and 
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10, the internal radius is fixed at 𝑟𝑎 = 3 and the outer radii are tuned from 9 to 17. We use 
our CDS simulations to investigate the morphological behavior of diblock copolymers in 
a one-dimensional circular annular confinement. The findings show that microdomains 
are oriented by surface preference to align in concentric circular rings around the center 
of the pore. However, some microdomains are packed along asymmetric spiral lines 
inside the pore shape. Packing dissatisfaction results from the interaction of curvature 
and confinement factors warping the usual spiral structure. 

3.6 Spherical forming simulation with neutral walls 

Circular annular pores of various sizes replicate a spherical forming block copolymer. 
Analysis of the self-assembling structure is done both with and without attractive walls 
between the blocks. Figure 21 depicts the cell dynamic simulation for the spherical 

forming system with a grid size of 30 × 60 × 1. Internal radius is fixed at 𝑟𝑎 = 3 and 
interaction strength 𝛼 = 0. External radius 𝑟𝑏 = 6, and pore size 𝑑 = 3. 

 

Figure 21: Spherical forming system at various time steps, including t=10 in (a), 
t=100 in (b), t=1000 in (c), t=10000 in (d), t=100000 in (e), and t=1000000 in (f) 

To improve the parameters for reproducing experimental characteristic domain sizes, the 
model constants are also being adjusted. Under confinement in a circular annular pore of 
different sizes, an AB diblock copolymer system that naturally forms spheres is being 
investigated.  

Table 5: Spherical morphologies in polar discs with neutral walls at  𝒓𝒂 = 𝟑 

𝑨 𝑩 𝑫 𝒖 𝒗 𝒇 𝝉 𝒓𝒂 𝜶 

1.50 0.01 0.50 0.58 2.30 0.40 0.20 3 0 
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The spherical forming system in annular discs of various pore sizes without attractive 
walls are studied. The interior radius is fixed at 3 and different pore sizes of the annular 
disc are achieved by tuning the exterior radius of the annular disc.  

The annular pore system's order parameters (𝜓) were initialized in the range of −0.5 ≤
𝜓 ≤ 0.5 to produce the simulation results for the sphere-forming system. The order 
parameter 𝜓 control the 𝜒𝑁 (degree of segregation between the two blocks). The CDS 
parameters for the simulation of the sphere system, which included a greater temperature 
entry than in earlier simulations, are shown in Table 5. 

 

Figure 22: Spherical forming system in circular annular discs with neutral walls at 

𝒓𝒂 = 𝟑 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 

𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results of an annular circular disc for spherical morphology with neutral 

walls are shown in Figure 22. The variable pore sizes 𝑑 are from 2, 3, 4, 5, 6, 7, 8,9 to 
10, the fixed internal radius 𝑟𝑎 = 3 and the outer radii are 5, 6, 7, 8, 9, 10, 11, 12 and 13 
respectively.  

A hexagonal configuration of the sphere-forming system is observed in the pore 
geometry. The presence of spherical nanostructures is obvious in the pore system. In 
Figure 22, it is demonstrated that the sphere-forming system is arranged in spiral lines 
and a hexagonal matrix. The spiral linings of spheres are likely to disappear with the 
increase in pore size, but hexagonal packing of spheres persists.  
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Figure 23: Spherical forming system in circular annular discs with neutral walls at 

𝒓𝒂 = 𝟓 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results of an annular circular disc for spherical morphology with neutral 
walls are shown in Figure 3.18. The pore size d is set at 2, 3, 4, 5, 6, 7, 8, 9 and 10, 

interior radius is fixed at  𝑟𝑎 = 5 and the outer radii of the discs are varied from 7, 8, 9, 10, 
11, 12, 13, 14 to 15. 

 

Figure 24: Spherical forming system in circular annular discs with attractive walls 

at 𝒓𝒂 = 𝟕 in pore size  𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 
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The simulation results of an annular circular disc for spherical morphology with neutral 
walls are shown in Figure 24. The pores size d are tuned as 2, 3, 4, 5, 6, 7, 8, 9, 10 the 

internal radius is fixed at 𝑟𝑎 = 7 and the outer radius is 9, 10, 11, 12, 13, 14, 15, 16, and 
17. In pore-sized systems with internal radii 5 and 7 respectively, the spherical 
arrangements reflect distorted spiral alignments due to the curvature effect as well as 
larger internal radii in pores.  

3.7 Spherical forming simulation with attractive walls 

The simulation results of an annular circular disc for spherical morphology with attractive 

walls (𝛼 = 0.2 ) are shown in Figure 3.13. The variable d, pore size is set at 2, 3, 4, 5, 6, 

7, 8, 9 and 10, the internal radius 𝑟𝑎 = 3 while outer radii are tuned from 5, 6, 7, 8, 9, 10, 
11, 12 to 13. 

 

Figure 25: Spherical forming system in circular annular discs with attractive walls 

at 𝒓𝒂 = 𝟑 in pore size  𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 

𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results have been achieved for the sphere-forming system confined in the 
annular disc. One-dimensional confinement by attaching one of the polymer segments to 
the circular walls' affinity is applied. The inner and exterior circular walls of the pore 
system are used as boundary conditions for one-dimensional confinement, with a 
specified interaction strength.  

A reduction in the temporal parameter in Table 5 is to achieve the sphere-forming system 
with the help of the CDS model. Simulation results demonstrate the B block of the diblock 
copolymers system in annular disc conforms into concentric circles in the pore geometry, 
correspondingly to pore diameters.  
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Figure 26: Spherical forming system in circular annular discs with attractive walls 

at 𝒓𝒂 = 𝟓 in pore size 𝐝 = 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 

𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results of an annular circular disc for spherical morphology with attractive 

walls  (𝛼 = 0.2 ) are shown in Figure 26. The pore size 𝑑  is set at 2, 3, 4, 5, 6, 7, 8, 9 and 
10, the internal radius of pore is fixed at  𝑟𝑎 = 5 and the outer radii are 7, 8, 9, 10, 11, 12, 
13, 14 and 15. Some hexagonal microdomains are achieved. A lack of spiral 
concentration is observed due to increasing internal radius and pore sizes as well.  

 

Figure 27: Spherical forming system in circular annular discs with attractive walls 

at 𝒓𝒂 = 𝟕 in pore size d= 𝟐 in (a), 𝐝 = 𝟑 in (b), 𝐝 = 𝟒 in (c), 𝐝 = 𝟓 in (d), 𝐝 = 𝟔 in (e), 
𝐝 = 𝟕 in (f), 𝐝 = 𝟖 in (g), 𝐝 = 𝟗 in (h) and 𝐝 = 𝟏𝟎 in (i) 

The simulation results of an annular circular disc for spherical morphology with attractive 

walls (𝛼 = 0.2 ) are shown in Figure 27. In this simulation configuration, the pore sizes 
vary from 2 to 10. The internal radius is set at  𝑟𝑎 = 7. The outer radii are 9, 10, 11, 12, 
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13, 14, 15, 16, and 17. The morphology of a diblock copolymer in a circular-annular pore 
geometry is investigated using the CDS model. A strong interaction occurs between the 
A monomer and the confined circular walls of the pore. Simulation results generated in 
this small region reveal the organization of microdomains into concentric spherical rings. 
Still, some microdomains are distorted into a rhombohedral pattern by confinement, a 
deviation from the normal concentric alignment. 
 
4. COMPARISON WITH OTHER STUDIES 

Predicted 
results 

Comparison with other studies 
 

 

[75] 
Block copolymers: synthesis, self-
assembly and applications 

[76] 
Cell dynamic simulations of diblock 
copolymer/colloid Systems 

 

[77] 
Directing the self-assembly of block 
copolymers 

[78] 
Self-assembly of diblock copolymers 
under confinement 

 

[75] 
Block copolymers: synthesis, self-
assembly, and applications 

[76] 
Cell dynamic simulations of diblock 
copolymer/colloid Systems 

 

[79] 
Hybrid time-dependent Ginzburg–
Landau simulations of 
block copolymer nanocomposites. 
Reproduced from 

[80] 
Block copolymer-directed assembly of 
nanoparticles. 

 

[81] 
Square patterns formed from the 
directed self-assembly of block 
copolymers 

[82] 
Self-assembly in ultrahigh molecular 
weight sphere-forming diblock 
copolymer thin films under strong 
confinement. 

 

[75] 
Block copolymers: synthesis, self-
assembly, and applications 

[81] 
Square patterns formed from the 
directed self-assembly of block 
copolymers 

 
5. CONCLUSION 

Using CDS, we simulated diblock copolymers that form lamellae, cylinders, and spheres 
under circular annular confinement for different pore sizes, both with and without 
appealing walls. An asymmetric lamella-former oriented perpendicular to the outer wall 
and preferred parallel to the inner wall is part of the neutral wall system. This preference 
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for orientation shows how the circular pore shape affects how block copolymer 
microdomains self-assemble. The CDS simulations showed that several perforated and 

junction lamellar morphologies, including 𝑦, 𝑢, 𝑤, 𝑣 and 𝑡a curved circular annular pore 
geometry produces shapes. Fingerprint textures with neutral walls produced perforated 
lamella with holes centered, isolated, or clustered. Concentric parabolic lamellar 
alignment is created by attractive walls close to external borders, changing to parallel 
strips at greater sizes directed perpendicular to the outer circular wall. The pore geometry 
carefully directs block copolymer assembly. Our CDS simulations demonstrated that 
lamellae develop parallel strips directed at circular boundaries in larger interior radius 
pores. Consistent with the experiment, pore geometry, and confinement cause concentric 
circular lamellar organization resembling a dartboard, especially when appealing circular 
walls are present. The findings show that microdomains coalesce into concentric lamellae 
within the pore under curvature and wall influences.  

Additionally, innovative cylindrical morphologies formed in irregular spiral patterns are 
made possible by neutral annular pores. The cylindrical spiral packing changes into a 
conventional hexagonal arrangement in big pores. Microdomains under interacting 
circular wall confinement exhibit concentrated circular ring packing. Analogous patterns 
are formed by spherical morphologies along spirals and parabolas with boundary 
openings. Additionally, this work presented novel CDS parameters that allow for the 
simulation of morphologies unique to circular confinement that have not been studied 
before. Smaller system sizes result in circles with spiral curves, whereas large circular 
pore systems yield circles with conventional hexagonal packing patterns, according to the 
results obtained using the CDS parameters.  

The size and form of the spherical system with adjusted CDS parameters are decreasing 
in the presence of interfacial circular barriers. The spherical system displays a packing 
pattern in concentric circular rings under the geometrical confinement of annular circular 
pores with interfacial circular walls. The findings demonstrate that the microdomains 
create packing arrangements in concentric circular rings when curvature is present. In 
contrast, the nanodomains display a spiral packing pattern when there is curvature and 
interfacial circular walls. 
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