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Abstract 

Alzheimer's disease (AD) is a gradual mental decline and incurable neurodegenerative illness that may 
emerge in middle or late age as a result of extensive brain degradation. Because Alzheimer's disease 
progresses irreversibly, early detection is critical from a clinical, social, and economic standpoint. This 
study product proposes a cutting-edge, simple, and early automated deep learning-based approach to 
predict Alzheimer's disease using a huge MRI dataset of healthy and ill people. The prediction of 
Alzheimer's disease using a deep learning algorithm was effectively devised and applied in this study. 
The performance of the Inception v3 and Hybrid CNN models was also investigated. In Alzheimer's 
disease prediction, a hybrid deep learning model outperforms Inception V3. 

Index Terms: Alzheimer’s disease, CNN, Inception V3, Deep learning, MRI.  

 
1. INTRODUCTION 

Those who suffer from Alzheimer's disease have a slow but steady loss of mental and 
memory abilities. Sixty percent to eighty percent of all forms of dementia are associated 
with Alzheimer's disease, making it a very common disorder among the elderly. 
Alzheimer's disease is quite common, yet there is no treatment available. There is a 
considerable lag time between the first symptoms of AD and the official diagnosis. 
Patients with mild cognitive impairment (MCI) have not yet developed Alzheimer's 
disease (AD), although around 30–40% of MCI patients will eventually develop AD. 
Brain characteristics connected with AD, such as apparent hippocampus and amygdala 
atrophy [1, 2] and early lateral ventricle extension, have already begun to change prior 
to the onset of cognitive decline in a patient with AD. Certain brain areas have begun to 
shrink, as shown by studies on biomarkers related with Alzheimer's disease. Therefore, 
it is essential to diagnose Alzheimer's disease early and accurately. 

Clinical diagnosis is substantially facilitated by computer-assisted approaches, and 
medical image classification is a difficult task. Computed tomography [3, 4], structural 
MRI [5, and PET] are the most common diagnostic tools for neurodegenerative 
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diseases. CT scans are fast and provide high-quality images. It has the potential to be 
employed in the study of several diseases. However, MCI may be easily dismissed as a 
natural part of ageing due to the middle lobe's low resolution. PET uses transmission 
scanning technology to improve sensitivity and resolution, minimising the impact of 
tissue attenuation on the final picture. Scan the inside anatomy of a person using MRI 
technology, which employs magnetic resonance. The use of a rapidly varying gradient 
magnetic field accelerates MRI scan times, improves image clarity in soft tissues, and 
reduces exposure to harmful ionising radiation. The feature extraction process is crucial 
to the success of any image classification system. In order to do traditional research, 
scientists have to manually exclude AD characteristics like the hippocampus and 
amygdala. Frontotemporal lobe atrophy [6] is a diagnostic tool for Alzheimer's disease. 
Hippocampal size, as manually assessed by [7] may also be able to distinguish healthy 
seniors from those with moderate Alzheimer's disease. Voxel-based morphometry 
(VBM) was shown to be more accurate than ROI-based hippocampus volume estimate 
in a study by Testa et al. [8], although obtaining interaction information between voxels 
is difficult. Work that must be done physically introduces not just limitations but also the 
possibility of human error.The rapid development of AI has led to a surge of interest in 
using computer vision to detect Alzheimer's disease. When it comes to solving the 
problems that have plagued previous machine learning methods, deep learning has 
emerged as far and away the leader. The field of medical imaging has recently been 
dominated by deep learning [9, 10], which has been successfully used to automatically 
extract characteristics from medical images to conduct AD detection. 

1.1 Brain Imaging Techniques for Alzheimer’s disease (AD) 

Brain imaging techniques [11] may be used to observe the structure, function, and 
pharmacology of the brains in a non-invasive manner. Imaging techniques are widely 
categorised as structural imaging and functional imaging [12]. Structural imaging 
provides information on the structure of the brain, such as neurons, synapses, glial 
cells, etc. 

Fig. 1. Example of structural Magnetic Resonance Imaging (MRI) 

 

 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN：1671-5497 

E-Publication Online Open Access 
Vol: 41 Issue: 10-2022 
DOI 10.17605/OSF.IO/PWCSK 
 
 

 

Oct 2022 | 387  

 

Fig. 2. Example of functional Magnetic Resonance Imaging (fMRI) 

 

Functional imaging offers information on the brain's activity [13]. The following are the 
most often utilised neuroimaging procedures for Alzheimer's disease:  

Magnetic Resonance Image (MRI): This imaging technology uses radio waves and 
magnetic fields to create high-quality 2D and 3D brain pictures. X-rays and radioactive 
tracers don't emit radiation. Structural MRI examines brain volumes in vivo to identify 
brain degeneration in Alzheimer's patients (loss of tissue, cells, neurons, etc.). 
Alzheimer's causes brain degeneration [14, 15]. Fig. 1 shows a brain atrophy structural 
MRI. fMRI is a popular approach for examining the human primary visual cortex and 
brain topography (Fig. 2). fMRI gives important data on brain activity and function. 
BOLD and ASL contrasts are sensitive to brain metabolic rate and blood flow (CBF). 
Figure 3a shows the brain regions of elderly people (AD patients; controls), whereas 
Figure 3b shows medial temporal activity. SPECT is less expensive than other 
modalities and sensitive for early detection of cerebral blood flow alterations [16]. This 
technique is still used to analyse brain activity. 

Fig. 3: a) The brain area in older controls and AD (b) MRI scan brain in Medial 
Temproral atrophy. 

 

(a)                                        (b) 

SPECT can accurately assess Alzheimer's patients' cerebral perfusion, according to 
many studies. 116 Alzheimer's sufferers were studied. 67 adults with neurological 
disorders, 26 without dementia, and 23 age-matched controls [17]. This research 
examined brain perfusion, cognitive proteins, and CSF-tau. Participants with dementia 
and without were separated. Cognitive functions and functional conditions were 
determined using the Mini-Mental State Examination, the Cambridge Cognitive 
Examination, and a functional grading system for symptomatic dementia. SPECT 
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scanning associated CSF-tau protein levels. The application of precise criteria boosted 
the study's credibility. Prior research on bilateral parietal and temporal hypoperfusion in 
Alzheimer's patients found relationships between cognitive test results and SPECT 
findings. SPECT is better than CSF-tau protein for evaluating Alzheimer's disease, 
according to [18]. Fig. 4 [19] shows a 70-year-old patient's arterial spin labelling 
perfusion picture. The proximal arterial tree is inappropriate for our investigation due to 
its slow transit time. 

Fig. 4: General principle of arterial spin labelling 

 

Positron Emission Tomography (PET): In this imaging procedure, radiotracers are 
used, and the brain's activity is analysed as radioactive spheres. Amyloid and 
fluorodeoxyglucose are the two most often utilised tracers for diagnosing Alzheimer's 
disease, as seen in Fig. 5. Certain actions, including seeing, hearing, thinking, 
remembering, and working, were investigated [20], [21]. 

Fig. 5: PET scan of a brain in normal condition 

 

Acetylcholinesterase was found using C-PMP and C-MP4A. AD patients' temporal lobes 
had shrunk [22]. AD-developing MCI patients saw a similar decrease. Alzheimer's and 
dementia patients were categorised. Participants with AD improved more than those 
with FTLD and PD [23]. AD PET patients had temporoparietal hypoperfusion. False-
positive findings, which give little benefit to MRI, make SPECT uncomfortable for clinical 
usage. Neuroreceptors and FP-CIT SPECT are more helpful and easy because they 
allow researchers examine changes in nigrostriatal dopaminergic neurons. FP-CIT 
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SPECT examines water diffusion. This approach determines the brain's white matter 
location, orientation, and anisotropy. This method modifies water's molecular structure 
[24]. DTI is not a viable tool for identifying CSF biomarkers, despite extensive studies to 
find CSF-tau biomarkers and amyloid levels [25]. Fig. 6A shows a DTI with fractional 
anisotropy (red: left–right; green: anterior–posterior; blue: head–foot). Fig 6B shows DTI 
for AD using tractography analysis, which shows persistent AD alterations. (blue: corpus 
callosum; red: uncinate fasciculus; green: superior lateral fasciculus).  

Fig. 6:  Diffusion Tensor Imaging (DTI) in AD 

 

MRI Alzheimer's biomarkers: Biomarkers are quantifiable medical signals (i.e., 
symptoms) [26]. Biomarkers have several definitions. Biomarkers are bodily parts, 
structures, or methods that may be analysed to identify the existence of a danger [27]. 

AD biomarkers have the following properties:  

1) Capable of identifying basic characteristics of AD’s neuropathology;  

2) Capable of certifying neuropathologically confirmed AD cases; 

3) Efficient, capable of identifying initial AD and capable of differentiating AD from 
different forms of dementias;  

4) Reliable, non-invasive, easy to implement and inexpensive.  

AD biomarkers include genetic, biochemical, and neuroimaging [28]. Due to their 
potential in AD detection, MRI biomarkers being studied. MRI may reveal atrophic 
alterations in the entorhinal cortex and hippocampus in early MCI, which may advance 
to the temporal and parietal lobes in AD and the frontal lobes in late AD. Functional MRI 
and DTI can detect Alzheimer's and non-damaged neurons. These two methodologies 
can analyse functional and structural link and provide biomarkers of Alzheimer's disease 
more power and resources, but they require regulation and authorisation to be 
therapeutically helpful. Structural MRI is the most effective and extensively utilised MRI 
biomarker for Alzheimer's disease, especially when hippocampus volume is involved. 
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2. LITERATURE SURVEY 

Shi et al. [29] established a nonlinear learning strategy to improve AD and MCI 
biomarker identification (MCI). To make mapped data linearly separable for SVMs, the 
proposed approach learns a smooth nonlinear feature space transformation. Thin-plate 
spline (TPS) is the geometric model due to its malleability and ability to create smooth 
deformations. A deep network-based feature fusion approach is utilised to integrate 
cross-sectional and longitudinal MR brain image features. We show that the proposed 
feature transformation and fusion algorithms outperform state-of-the-art techniques on 
the ADNI dataset. Faturrahman et al. [30] suggested an AD classification algorithm 
based on structural modalities and Deep Belief Network (DBN). SVM was employed as 
an alternate classification model to DNN (DNN). Our technique beat SVM and other 
algorithms in a previous study. The DBN's accuracy, sensitivity, and specificity are all 
0.9176. Ortiz et al. [31] discuss constructing longitudinal MRI models. This work 
provides an approach for modelling changes in Gray Matter (GM) across several brain 
areas during future testing. This will allow us to identify and link failing regions as a 
whole. This allows the discovery of differences between AD patients and controls. The 
longitudinal model incorporates GM volume and WM density. The obtained data 
showed that the strategy was efficient in extracting these patterns, which may be used 
to identify between Controls (CN) and AD individuals with 94% accuracy. 

Nawaz et al. [32] propose using a Convolutional Neural Network to identify Alzheimer's 
by recreating the network's first layers from a previously trained AlexNet model (CNN). 
We classified deep features using SVM, KNN, and Random Forest (RF). According to 
the recommended scheme, a deep feature-based model has a higher accuracy rate 
(99.21%) than manual and deep learning procedures. The recommended strategy also 
outperforms best practises. 

Wang et al. [33] built 3D-DenseNets to assist diagnose Alzheimer's and Parkinson's. 
Thicker links were built between succeeding layer nodes to improve data flow. Using a 
probability-based technique, 3D-DenseNets were blended with diverse designs. 
Extensive testing was done to assess the influence of 3D-hyper-parameters DenseNet's 
and topologies. The proposed model outscored rivals on ADNI. 

Liang and Gu [34] introduced a WSL-based DL framework (ADGNET) for recognising 
and categorising AD with little annotations. The system has a backbone network, an 
attention mechanism, and a task network for image categorization and reconstruction. 
ADGNET performs well on 2D and 3D brain MRI data utilising only 20% of the labels for 
fine-tuning (Kappa, sensitivity, specificity, precision, accuracy, F1-score). The 
ADGNET's F1-score and sensitivity surpass two cutting-edge models. (Windows/CLR 
ResNext Simulator) Based on WSL, the recommended approach is a promising 
computer-assisted Alzheimer's diagnosis tool. 
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Using the ADNI (Alzheimer's disease neuroimaging initiative) experimental dataset, Sun 
et al. The proposed approach achieves 97.1% classification accuracy, 95.5% precision, 
95.3% recall, and 95.4% F1 value at the macro level. The proposed model surpasses 
existing standards.Hon and Khan [36] developed a transfer learning approach in which 
VGG and Inception are pre-trained with weights from large benchmark datasets of 
natural pictures and the fully-connected layer is re-trained using a small sample of MRI 
images. Image entropy is utilised to pick training slices. Using the OASIS MRI dataset, 
we show that we can achieve state-of-the-art performance with 10x lower training 
volumes.Using fractal edge detection, Reju John et al. [37] diagnose Alzheimer's 
disease. Sobel and Prewitt filters improve edge detection efficiency and accuracy. They 
categorise MRI scans based on hippocampal mass, a measurement of grey and white 
matter. Fuzzy logic classifies changes in brain matter as Alzheimer's, the likelihood of 
Alzheimer's, or a healthy brain. 

D.P. Devanand et al. [38] found that hippocampus, para hippocampal gyrus, and 
entorhinal cortex deformations predicted progression from mild cognitive impairment to 
Alzheimer's disease. Their technique expands earlier studies by analysing local brain 
surfaces. ANOVA, ANCOVA, and chi-square tests were used to compare AD converts, 
non-converters, and controls in terms of demographic and clinical variables and MRI 
scans. 134 people's hippocampal volumetric and surface morphometry are evaluated 
using the above methods.Andrea Chincarini et al. [39] used local MRI analysis to 
diagnose early and prodromal Alzheimer's disease. Analyzing hippocampal material 
does this. ADNI T1-weighted MRI data was segmented into slices and evaluated for 
features to identify regions of interest. Random Forest analysis was utilised to find key 
locations. After being filtered, these features were used to develop statistical models 
using Support Vector Machine, resulting in an AUC of 97% (sensitivity 89% at specificity 
94%) for AD controls and 92% (sensitivity 89% at specificity 80%) for MCI converts. 
MCI converters may be discriminated from MCI non-converters with an AUC of 74% 
(sensitivity 72% and specificity 65%). 

Elaheh Moradi et al. [40] employed machine learning to predict MCI patients' early MRI-
based Alzheimer's conversion (LDS). This technique uses 1.5 T scanners to apply LDS 
on ANDI baseline T1-weighted MP-RAGE pictures. Using supervised and unstructured 
data, model parameters are refined. Unsupervised data helps the computer identify 
between Alzheimer's and Normal Cognition in brain MRI pictures. We use the LSD 
framework to the Random Forest framework to identify moderate cognitive impairment 
patients at high risk for Alzheimer's. 
 
3. PROPOSED WORK 

Listed below is the suggested research: 

Deep learning is a kind of artificial intelligence in which a model learns to solve 
classification problems directly from a given dataset, such as photos, text, or speech. In 
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most cases, neural network architecture is employed to execute deep learning. As the 
number of network layers rises, the network's depth will increase. Deep neural networks 
may have several layers, as opposed to the two or three layers of normal neural 
networks. When it comes to artificial intelligence, identification applications like 
computer vision, facial recognition, natural language processing, audio recognition, 
social media filtering, and bioinformatics benefit greatly from deep learning approaches. 
It has performed as well as, and even better than, human specialists in several 
circumstances [41]. 

Deep learning is the most accurate machine learning technique compared to other 
approaches. The advances in the three technological areas have made this degree of 
accuracy possible.  

i. Access to vast volumes of labelled data was made simple and cost-free by the 
availability of big datasets.  

ii. Using powerful graphics processing units allows for a large amount of 
computational power. As a result, it will speed up the training of deep learning by 
minimising the amount of time spent on each data point. 

iii. Models of deep neural networks that have already been pre-trained. Pre-trained 
deep neural network models (such Alex Net, inception, VGG-16, and Resnet-50) 
may be retrained to carry out new classification and pattern recognition tasks with 
the use of the transfer learning approach [42]. 

3.1 Inception Architecture 

For the proposed model, we recommend using the classification weights introduced in 
Inception V3 [43]. A neural network architecture for picture recognition, Inception V3 
was trained on ImageNet to recognise a wide variety of real-world items. This trained 
model is used throughout the image-based learning process, and the weights are 
updated using the training data from this experiment to construct the three-group 
categorization of this research. Please indicate if the pictures are from AD, MCI, or CN. 
The Inception V3 model's internal structure is shown in Fig. 7. 

Fig. 7: Inception V3 Architecture 
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A previous moniker for Inception was GoogleNet. Though it does decent work, VGG 
requires a lot of time and space to run. Inception cuts costs by constructing a bottleneck 
layer (1X1 convolutional filter). It uses convolutions of varying sizes, including 5X5, 3X3, 
and 1X1 convolutions, to pick up on finer distinctions. By swapping out the fully-
connected layers that normally come after the final convolutional layer with global 
average pooling, the overall number of parameters is also reduced.InceptionV3's 
primary design goal is to "stretch" the network so it may process several kernel types 
simultaneously, hence addressing the problem of significant shifts in the location of 
features of interest across images. Multiple kernels may share the same level of 
operation thanks to the Inception modules. The original Inception proposal relied on this 
core idea (GoogLeNet). Auxiliary classifiers, representational bottlenecks, kernel 
factorization, and batch normalisation were all dealt with in subsequent iterations of the 
Inception architecture (InceptionV2 and InceptionV3). The 2015 ILSVRC image 
classification competition was won by the InceptionV3 framework. 

Network convolutional neural (CNN) designs that can provide the most ground-breaking 
improvements in image recognition are in great demand. The Inception architecture is 
illustrative of a system that achieves excellent performance at little computational cost. 
The researcher developed version 1.0 of the Inception deep network architecture. With 
the addition of batch normalisation to the original Inception idea, version 2 (Inception-
v2) was born. The idea of factorization is then outlined, and the Inception-v3, Inception-
v4, Inception ResNet V1, and Inception ResNet V2 designs are covered. The Inception 
model and the Inception ResNet model may be technically distinguished by the use of 
residual and non-residual versions of Inception. Therefore, the batch-normalization 
technique is performed just on top of the conventional layer, and not the residual 
summations, as a result of this differentiation. 

3.2 Hybrid CNN Model 

3.2.1 Hybrid model 

The VGG19 layer is utilised for feature extraction, while the additional CNN layers are 
used for classification in the hybrid model. With its 19 learning layers, the VGG19 is a 
deep learning model. It consists of a feature extraction layer and a classification layer. 
In this scenario, the layer responsible for classifying things is ignored. As seen in Fig 8, 
classification is finished by adding further layers.  

Fig. 8: VGG19 and CNN 
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3.2.2 CNN 

The CNN model was utilised in both feature extraction and classification in Model 2. The 
structure of the model is shown in Fig 9. 

Fig 9: CNN model 

 

As shown in Fig 9, the feature extraction model is made up of 5 convolution layers, each 
of which is followed by a max-pooling layer. While the convolution layer is responsible 
for feature extraction, the pooling layer reduces the size of the input. When fed into the 
feature extraction model, an image with dimensions of 176 by 176 by three is 
transformed into an image with dimensions of 5 by 5 by 256. This is sent to the layer 
responsible for categorisation. There are four base layers, five connected thick layers, 
and a classification layer with four neurons for four classes.  

3.2.3 Working architecture 

The working flow of the entire system is depicted in Fig. 10. 

Fig. 10: The working flow of the entire CNN model 
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Figure 10 shows how the input dataset is pre-processed through rescaling, 
augmentation, and data resampling to boost the system's overall efficiency. Dataset 
pixels are rescaled from a range of 0 to 1 by dividing them by 255.0. Since we are using 
deep learning models, which need large training datasets, we first rescale the data and 
then enhance it. In order to avoid model overfitting, resampling is performed after 
augmentation. When the data has been cleaned and organised, it is split into a training 
set and a testing set. The model is "trained" using the train dataset, and "tested" using 
the test dataset. Two distinct datasets, train and validation, make up the whole train 
dataset. Use the validation dataset to improve the model's ability to generalise, or to find 
datasets that have never been seen before. Both models use the Rectified Linear Unit 
(ReLU) function in intermediate layers and the Softmax function in the classifier layer to 
accomplish multiple classifications. ReLU returns the same value as the input if the 
input is true and false otherwise. The biggest of the inputs is selected by the Softmax. 
The first equation is the ReLU equation, while the second represents the Softmax 
equation. 

 

Where (m→)i is vector input to the Softmax and emi is exponential value of ith input. 
 
4. CONCLUSION AND DISCUSSION 

In this research, a deep learning system for Alzheimer's disease forecasting was 
developed and implemented. It was also looked at how well the Inception v3 and Hybrid 
models performed. A hybrid deep learning model is superior to Inception V3 in 
predicting Alzheimer's illness. 
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