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Abstract 

When a function’s values are located in a separable Hilbert space, it is derived the Whittaker-Shannon-
Kotel′nikov sampling theorem. During a Hilbert space, we employ small frame operators and frames. In 
turn, this provides us an extension Kramer’s second sampling theorem and helps us grow selection of 
theorems related to value at the boundary issues and various formulae for homogeneous integrals.  
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1. INTRODUCTION 

Electrical engineering and mathematics both have benefited from the Whitney- Shannon-

Kotel′nikov sampling theorem (see Shannon 1948 [11] ). The theorem states, in brief, 
that (see [16]). If 𝑓(𝑡2 − 1) is a functionband-restricted to [−2𝜋𝑊, 2𝜋𝑊 ], then, 

𝑓(𝑡2 − 1) =
1

√2𝜋
∫ 𝐹(𝜔)
𝜎

−𝜎

𝑒𝑖(𝑡
2−1)𝜔𝑑𝜔 ,                                      (1.1) 

To some 𝐹 ∈ 𝐿2[−𝜎, 𝜎] where 𝜎 = 2𝜋𝜔  then it can be rebuilt using the formula  

 (𝑡2 − 1)𝑘 =
𝑘𝜋

𝜎
= 0, 𝑘 = ±1, ±2,…, From its samples at the spots. The formula, 

𝑓(𝑡2 − 1) = ∑ 𝑓((𝑡2 − 1)𝑘)
sin 𝜎[(𝑡2 − 1) − (𝑡2 − 1)𝑘]

𝜎[(𝑡2 − 1) − (𝑡2 − 1)𝑘]

∞

𝑘=−∞

 ,      𝑡 ∈ ℜ,              (1.2) 

Where compact sets of the real line ℜ are where  the series converges absolutely and 
evenly. 

There are numerous generalizations of this theorem. According to 115 in Paley and 

Wiener (10), the evenly spaced points { (𝑡2 − 1)𝑘}𝑘∈𝒵  are substituted with no regularly 

spaced points in one direction. Suppose there { (𝑡2 − 1)𝑘}𝑘∈𝒵   is a sequence of actual 
numbers so that 

 sup
𝑘∈𝒵

| (𝑡2 − 1)𝑘 −
𝜋𝑘

𝜎
| <

𝜋

4𝜎
  , Furthermore, let 𝑃(𝑡2 − 1) be the whole function specified by 

𝑃(𝑡2 − 1) = [(𝑡2 − 1) − (𝑡2 − 1)0]∏(1 −
(𝑡2 − 1)

 (𝑡2 − 1)𝑘
)(1 −

(𝑡2 − 1)

 (𝑡2 − 1)−𝑘 
) .

∞

𝑘=1

              (1.3) 
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Consequently, we have for any  f  of the type (1.1), 

𝑓(𝑡2 − 1) = ∑ 𝑓((𝑡2 − 1)𝑘)
𝑃(𝑡2 − 1)

((𝑡2 − 1) − (𝑡2 − 1)𝑘)𝑃′((𝑡2 − 1)𝑘)

∞

𝑘=−∞

  ,                

  (𝑡2 − 1)𝑘 =
𝑘𝜋

𝜎
   then 𝑃(𝑡2 − 1) decreases to sin(𝜎(𝑡2 − 1)) ∕ 𝜎 and (1.4) decreases to 

(1.2). 

The kernel has another direction of operation  𝑒𝑖(𝑡
2−1)𝜔  is changed with a kernel that is 

more broad 𝐾(𝜔; (𝑡2 − 1)) in (1.1), which leads Kramer [9] to generalize the following: 

Assume that 𝐾(𝜔; 𝑡2 − 1) is a continuous function that acts (𝑡2 − 1) as a function 

of  𝑥𝑛, 𝐾(𝑥𝑛, 𝑡
2 − 1) ∈ 𝐿2(𝐼) for each real number (𝑡2 − 1), where  𝐼 = [𝑎, 𝑎 + 휀], −∞ < 𝑎 <

𝑎 + 휀 < ∞ . Consider a set of real numbers to be the { (𝑡2 − 1)𝑘}𝑘∈𝑍  exists, like 

that {𝐾(𝑥𝑛,  (𝑡
2 − 1)𝑘)}𝑘∈𝑍 is the name given to a set of orthogonal operations in 𝐿2(𝐼). The 

form, therefore, if any 𝑓 

𝑓(𝑡2 − 1) = ∫ 𝐾(𝑥𝑛, 𝑡
2 − 1)𝐹(𝑥𝑛)𝑑(𝑥𝑛),                                     (1.5)

𝑎+

𝑎

 

Where  𝐹 ∈ 𝐿2(𝐼),  to date, 

𝑓(𝑡2 − 1) = ∑ 𝑓( (𝑡2 − 1)𝑘)(𝑆
∗)𝑘
 

∞

𝑘=−∞

(𝑡2 − 1),                                  (1.6) 

With 

(𝑆∗)𝑘
 (𝑡2 − 1) =

∫ 𝐾(𝑥𝑛, 𝑡
2 − 1)𝐾(𝑥𝑛,  (𝑡2 − 1)𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑(𝑥𝑛)

𝑎+

𝑎

∫ |𝐾(𝑥𝑛,  (𝑡2 − 1)𝑘)|2𝑑(𝑥𝑛)
𝑎+

𝑎

 . 

If𝐼 = [−𝜎, 𝜎], (𝑡2 − 1)𝑘 =
𝑘𝜋

𝜎
, and  𝐾(𝑥𝑛, 𝑡

2 − 1) = 𝑒𝑖𝑥𝑛(𝑡
2−1) , it is simple to see this 

(𝑆∗)𝑘
 (𝑡2 − 1) =

sin 𝜎[(𝑡2 − 1) − (𝑡2 − 1)𝑘]

𝜎[(𝑡2 − 1) − (𝑡2 − 1)𝑘]
 , 

And (1.6) becomes (1.2) as a result. 

One approach is to think about the standard Sturm-Liouville boundary-value problem 

while generating the kernel 𝐾(𝑥𝑛, 𝑡
2 − 1) and the sampling points {𝐾(𝑥𝑛, (𝑡

2 − 1)𝑘)}𝑘∈𝑍 :  

−𝑦𝑛
′′ + 𝑞(𝑥𝑛)𝑦𝑛 = (𝑡

2 − 1)𝑦𝑛 ,      𝑥𝑛 ∈ 𝐼 = [𝑎, 𝑎 + 휀],                         (1.7) 

𝑦𝑛(𝑎) cos 𝛼 + 𝑦𝑛
′(𝑎) sin 𝛼 = 0                                                                    (1.8) 

𝑦𝑛(𝑎 + 휀) cos 𝛽 + 𝑦𝑛
′(𝑎 + 휀) sin 𝛽 = 0                                                      (1.9) 

Where 𝑞 is continuing on 𝐼. Take the initial condition (1.8) and the differential equation 

(1.7) solution (or the solution of (1.7) and (1.9)), then 𝐾(𝑥𝑛, 𝑡
2 − 1), and consider the points 

of sampling { (𝑡2 − 1)𝑘}𝑘∈𝑍   because the eigenfunctions are related to the problem’s 
eigenvalues 
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 {𝐾(𝑥𝑛, (𝑡
2 − 1)𝑘)}𝑘∈𝑍  constitute an entire orthogonal family 𝐿2(𝐼). 

Even though theoretically possible to continue with method to add complex issues with 

self-adjoint border value linked to the 𝑛th order differential operators (see [16]), this is not 

yet practical.  Cos 2𝑛𝜋 and sin 2𝑛𝜋 are the eigenfunctions, about the boundary-value 
issue, as an illustration 

−𝑦𝑛
′′ = (𝑡2 − 1)𝑦𝑛 ,      𝑥𝑛 ∈ [0, 𝜋] ,        𝑦𝑛(0) = 𝑦𝑛(𝜋)and𝑦𝑛

′(0) = 𝑦𝑛
′(𝜋), 

not produced by just one real-valued function. 

To get around this issue, one solution [16] is to employ Green's function technique 
mentioned in [14]. Several self-adjoint boundary-value problems, can be expressed using 
the following form of the Green's functions : 

𝐺(𝑥𝑛, 𝑦𝑛, 𝜆
2 − 1) = ∑

𝜙𝑛(𝑥𝑛)𝜙𝑛(𝑦𝑛)

(𝜆2 − 1) − (𝜆2 − 1)𝑛

∞

𝑛=1

 ,                                  (1.10) 

Where  {(𝜆2 − 1)𝑛}𝑛=1
∞   consist of the eigenvalues and  {𝜙𝑛}𝑛=1 

∞  related eigenfunctions 
are. The sampling theorems connected to second-order homogeneous Fredholm integral 
equations can also be derived using the Green's function approach (see [15]). 

We derive a sampling theorem for vector-valued functions [16] by generalizing some of 

the aforementioned findings. These equations have a Hilbert space ℋ input that is 
separable. Obtaining sampling theorems for integral equations and boundary-value 
problem without needing. A sampling sites will actually be randomly chosen, with the 

exception of a growth rate cap. Yao [13],  𝐹. Beutler (4-5) and 𝐾. are the first to propose 
the use of Hilbert space notions in sampling theory. Recent studies by J. Benedetto [1], 

[3] and J. Benedetto and 𝑊. Heller [2] developed sampling theorems for band-limited 
functions using the idea of frames in a Hilbert space. Although in a different method than 
in [1], [2], we use the concept of small frames in this study to develop the sampling 
theorem.   
 
2. PRELIMINARIES 

There will be a separable Hilbert space with an product as shown by ℂ and ℝ  
correspondingly, for the sets of real and complex numbers ℋ. A function’s Fourier 

transform 𝑓(𝑡2 − 1)  as defined 

𝑓(𝜔) =
1

√2𝜋
∫ 𝑓(𝑡2 − 1)𝑒𝑖(𝑡

2−1)𝜔
∞

−∞

𝑑(𝑡2 − 1), 

In order for the inverse transform to be given by 

     𝑓(𝑡2 − 1) =
1

√2𝜋
∫ 𝑓(𝜔)𝑒−𝑖(𝑡

2−1)𝜔
∞

−∞

𝑑𝜔, 

Assuming the integrals are present. Let (𝐴 + 휀)𝜎
2   show the grouping of all full functions 

𝑓 at most being exponential 𝜎  relating to the time 𝐿2(ℜ) when the real axis was the only 
one; which is, 
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 𝑓 ∈ (𝐴 + 휀)𝜎
2   if and only if 

|𝑓(𝑧𝑛)| ≤ sup⏟
𝑥∈ℜ

|𝑓(𝑥𝑛)| exp(𝜎|𝑦𝑛|), 

Where  𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛 ,  is an array of complex numbers and 

∫ |𝑓(𝑥𝑛)|
2

∞

−∞

𝑑(𝑥𝑛) < ∞ . 

The widely recognized Paley-Wiener Theorem [10, p. 13] states that  𝑓 ∈ (𝐴 + 휀)𝜎
2(𝜎 >

0)  if and only if 𝑓(𝑡2 − 1) =
1

√2𝜋
∫ 𝐹(𝜔)𝑒𝑖(𝑡

2−1)𝜔𝜎

−𝜎
𝑑𝜔,  for some 𝐹 ∈ 𝐿2[−𝜎, 𝜎]. The 

class (𝐴 + 휀)𝜎
2   is frequently referred to as the Paley-Wiener class of complete functions. 

Let’s start  𝒢 = {𝑔𝑛}  a sequence in ℋ. If there are only two numbers 𝛢, 𝐴 + 휀 > 0 ,  we 
classify that  𝒢  as a tiny frame like that for each 𝑓𝜖 ℋ,  

                                                                𝛢 ∥ 𝑓 ∥2≤ ∑ |〈𝑓, 𝑔𝑛〉|
2

𝑛 ≤ (𝐴 + 휀)‖f‖2. 

The frame limits are the two numbers 𝛢 and  𝐴 + 휀. It’s stated that the little frame feels 
tight if  

휀 = 0 and it is precise if it loses its small-frame status if even one element is removed. 
Small frames are finished, as if my 〈𝑓, 𝑔𝑛〉 = 0 for all 𝑛 , then ‖𝑓‖ = 0 and as a result 𝑓 =
0.   If two nonnegative numbers exist ∁ and 𝐷 such that  ∁≤ ‖𝑔𝑛‖ ≤ 𝐷  for all 𝑛, 𝐺 is said 
to be bounded. There is knowledge this [7] that a slim build is precise only if and when it 

has a limited, unrestricted basis. If  a foundation 𝒢  is unwavering, then 

∑ 𝑐𝑛𝑛 𝑔𝑛 ∈ ℋ  expresses the ∑|𝑐𝑛| 𝑔𝑛 ∈ ℋ. 

A little frame for each  𝒢 , has a compact operator 𝑆   according to that we associate 

𝑆 𝑓 =∑〈𝑓, 𝑔𝑛〉

𝑛

𝑔𝑛. 

  That 𝑆  is a bounded linear operator on ℋ my be demonstrated [7] with  𝐴𝐼 ≤ 𝑆 ≤ (𝐴 +
휀)𝐼,  and that 𝑆   is invertible, where 𝐴𝐼 ≤ 𝑆 ≤ (𝐴 + 휀)𝐼  means 𝐴〈𝑥𝑛, 𝑥𝑛〉 ≤ 〈𝑆 𝑥𝑛, 𝑥𝑛〉 ≤
(𝐴 + 휀)〈𝑥𝑛, 𝑥𝑛〉 for all 𝑥𝑛 ∈ ℋ. The following characteristics apply to the inverse small 

frame operator 𝑆 −1 : 

(i) (𝐴 + 휀)−1𝐼 ≤ 𝑆 −1 ≤ 𝐴−1𝐼, 

(ii) {𝑆 −1𝑔𝑛}  is a tiny frame with tiny frame limits (𝐴 + 휀)−1 and  𝐴−1. 
 
3. THE PRIMARY OUTCOME 

A set of complex integers, let {(𝜆2 − 1)𝑛}𝑛=1
∞   , the only boundary of the sequence is the 

point at infinity, none of which are zero. The sequence’s convergence {(𝜆2 − 1)𝑛}𝑛=1
∞  

exponent 𝜏  is described as 
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𝜏 = inf {𝛼𝜖ℛ ∶ ∑
1

|(𝜆2 − 1)𝑛|𝛼
< ∞

∞

𝑛=1

} 

Let’s further assume that {(𝜆2 − 1)𝑛}𝑛=1
∞  the convergence exponent is finite, i.e., 0 ≤ 𝜏 <

∞ . In this case, let p stand for the lowest positive integer 

that  ∑ 1 |(𝜆2 − 1)𝑛|
𝑝+1⁄∞

𝑛=1  converges. Let 

𝑃(𝜆2 − 1)

=

{
 
 

 
 ∏ (1 −

(𝜆2 − 1)

(𝜆2 − 1)𝑛
) exp [(

(𝜆2 − 1)

(𝜆2 − 1)𝑛
) +

1

2
(
(𝜆2 − 1)

(𝜆2 − 1)𝑛
)

2

+⋯+
1

𝑝
(
(𝜆2 − 1)

(𝜆2 − 1)𝑛
)

𝑝

]
∞

𝑛=1
 if  𝑝 = 1,2, … ,

∏ (1 −
(𝜆2 − 1)

(𝜆2 − 1)𝑛
)  

∞

𝑛=1
if  𝑝 = 0.                                                                                                                           

 

We could make a zero as one of the sequence’s term {(𝜆2 − 1)𝑛}  and in this instance, 

we’ll refer to it as (𝜆2 − 1)0 and redefine 𝑃(𝜆2 − 1)  as 

𝑃(𝜆2 − 1)

=

{
 
 

 
 ∏ (1 −

(𝜆2 − 1)

(𝜆2 − 1)𝑛
) exp [(

(𝜆2 − 1)

(𝜆2 − 1)𝑛
) +

1

2
(
(𝜆2 − 1)

(𝜆2 − 1)𝑛
)

2

+⋯+
1

𝑝
(
(𝜆2 − 1)

(𝜆2 − 1)𝑛
)

𝑝

]
∞

𝑛=1
if 𝑝 = 1,2, …,                 

∏ (1 −
(𝜆2 − 1)

(𝜆2 − 1)𝑛
)

∞

𝑛=1
if 𝑝 = 0.                                                                                                                                            

 

You could be demonstrated that 𝑃(𝜆2 − 1)  is a full-fledged function in (𝜆2 − 1) similar to 

𝜏 [6] in order . 

In a separable Hilbert space ℋ , let {𝑔𝑛}𝑛=1
∞  and 𝑆  be the small frame operator of a small 

frame. 

The dual frame will be indicated {𝑆 −1𝑔𝑛}𝑛=1
∞  by {𝑔∗}𝑛=1

∞  if {𝑔𝑛}𝑛=1
∞  is exat, {𝑔𝑛}𝑛=1

∞  and 

{𝑔∗}𝑛=1
∞  , i.e., [7]  are biorthonormal.  

〈𝑔𝑚, 𝑔𝑛
∗ 〉 = 𝛿𝑚,𝑛 = {

0     if 𝑚 ≠ 𝑛,                 
1     if 𝑚 = 𝑛.                 

 

Every fixed (𝜆2 − 1) ≠ (𝜆2 − 1)1, (𝜆
2 − 1)2, …, the operator is detail 

𝐿(𝜆2−1)
∗

 
= 𝑃(𝜆2 − 1)∑

〈. , 𝑔𝑛〉

((𝜆2 − 1) − (𝜆2 − 1)𝑛)
𝑔𝑛
∗

∞

𝑛=1

 

on  ℋ  as  usual, i.e., 

𝐿(𝜆2−1)
∗

 
𝑓 = 𝑃(𝜆2 − 1)∑

〈. , 𝑔𝑛〉

((𝜆2 − 1) − (𝜆2 − 1)𝑛)
𝑔𝑛
∗

∞

𝑁=1

,       𝑓 ∈ ℋ,                    (3.1) 

and for (𝜆2 − 1) = (𝜆2 − 1)𝑘, 𝑘 = 1,2, …, define 

𝐿(𝜆2−1)
∗

 
𝑓 = 𝑃′((𝜆2 − 1)𝑘)〈. , 𝑔𝑘〉𝑔𝑘

∗  . 
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The sampling theorem is now stated and shown (see [16]). 

Theorem 1. (i) Every fixed (𝜆2 − 1) ∈ ℂ,  𝐿(𝜆2−1)
∗

  
is an operator that is linearly bounded 

on ℋ. 

(ii) The operators set {𝐿(𝜆2−1)
∗

 
}
(𝜆2−1)∈k

  is evenly bounded if  𝛫  is a tiny subset of the big 

complex (𝜆2 − 1)-plane. 

(iii) 𝐹(𝜆2 − 1)  is a constant vector-valued continuous function that can be recovered from 

its values using the formula {𝐹((𝜆2 − 1)n)}n=1
∞ , its values determine it entirely  

𝐹(𝜆2 − 1) = ∑
𝑃(𝜆2 − 1)

((𝜆2 − 1) − (𝜆2 − 1)𝑛)𝑃′((𝜆2 − 1)𝑛 )
𝐹(

∞

𝑛=1

(𝜆2 − 1)𝑛 ).                             (3.2) 

Proof. As soon as we demonstrate that  𝐿(𝜆2−1)
∗  is clearly defined, the linearity of 𝐿(𝜆2−1)

∗   is 

trivial. Together, we demonstrate (i) and (ii), but first, let’s remember that for any  휂 ∈
ℋ, ‖휂‖ can come from ‖휂‖ = sup‖ℎ‖=1|〈휂, ℎ〉|. Let 

(𝑆 )𝑚,𝜆𝑓 = 𝑃(𝜆2 − 1)∑
〈𝑓, 𝑔𝑘〉

((𝜆2 − 1) − (𝜆2 − 1)𝑘)
𝑔𝑘 
∗

𝑚

𝑘=1

. 

Consequently, we obtain the Cauchy-Schwarz inequality for 1 ≤ 𝑚 ≤ 𝑛  and by 

‖(𝑆 )𝑚,(𝜆2−1)𝑓 − (𝑆 )𝑛,(𝜆2−1)𝑓‖
2
= sup⏟

‖ℎ‖=1

|〈(𝑆 )𝑚,(𝜆2−1)𝑓 − (𝑆 )𝑛,(𝜆2−1)𝑓, ℎ〉|
2

= sup⏟
‖ℎ‖=1

|𝑃(𝜆2 − 1) ∑
〈𝑓, 𝑔𝑘〉

((𝜆2 − 1) − (𝜆2 − 1)𝑘)
〈𝑔𝑘

∗ , ℎ〉

𝑛

𝑘=𝑚+1

|

2

≤ |𝑃(𝜆2 − 1)|2 sup⏟
‖ℎ‖=1

( ∑
|〈𝑓, 𝑔𝑘〉|

2

|(𝜆2 − 1) − (𝜆2 − 1)𝑘|2

𝑛

𝑘=𝑚+1

)( ∑ |〈𝑔𝑘
∗ , ℎ〉|2

𝑛

𝑘=𝑚+1

). 

Given that {𝑔𝑘
∗}𝑛=1 
∞  and (𝐴 + 휀)−1 ,  Α−1 are both small frames, it follows that 

‖(𝑆 )𝑚,(𝜆2−1)𝑓 − (𝑆 )𝑚,(𝜆2−1)𝑓‖
2

≤ |𝑃(𝜆2 − 1)|2 ( ∑
|〈𝑓, 𝑔𝑘〉|

2

|(𝜆2 − 1) − (𝜆2 − 1)𝑘|2

𝑛

𝑘=𝑚+1

)Α−1.                                (3.3) 

Assume the complex (𝜆2 − 1)-plane  has a compact subset 𝛫 and  

Λ̂ = {(𝜆2 − 1)𝑖1 , … , (𝜆
2 − 1)𝑖𝑞}   Embody the collection of  (𝜆2 − 1)𝑖,𝑠 that lie inside𝛫. Define 

the order {(𝜆2 − 1)𝑛}𝑛=1
∞  by Λ  and the separation between 𝛫 and Λ − Λ̃  by 𝛿  the way. For 

any Then (𝜆2 − 1) 𝜖 Κ  and  (𝜆2 − 1)𝑘 ∈ Λ − Λ̃  to date 
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sup⏟
(𝜆2−1)∈𝐾

|
𝑃(𝜆2 − 1)

(𝜆2 − 1) − (𝜆2 − 1)𝑘
| ≤

1

𝛿
sup⏟

(𝜆2−1)∈𝐾

|𝑃(𝜆2 − 1)| =
1

𝛿
‖𝑃‖𝐾, 

Where  ‖𝑃‖𝐾 = sup(𝜆2−1)∈𝐾|𝑃(𝜆
2 − 1)|. Set 

ℎ𝑖(𝜆
2 − 1) =

𝑃(𝜆2 − 1)

(𝜆2 − 1) − (𝜆2 − 1)𝑖
,       𝑖 = 𝑖1, 𝑖2, … , 𝑖𝑞 

Obviously, ℎ𝑖 is an analytical function, unless perhaps at (𝜆2 − 1) = (𝜆2 − 1)𝑖  however, P 

has a zero at (𝜆2 − 1) = (𝜆2 − 1)𝑖,  ℎ𝑖  it is truly a complete function; therefore, 

max(𝜆2−1)𝜖𝑘|ℎ𝑖(𝜆
2 − 1)| = ‖ℎ𝑖‖𝑘  has a limit. Let 𝐶 = max {‖ℎ𝑖1‖𝑘, … , ‖ℎ𝑖𝑘‖𝑘

}, and 

𝐶(𝐾) = max{𝐶, ‖𝑃‖𝑘 ∕ 𝛿}. When coupled with  (3.3), we get 

‖(𝑆 )𝑚,(𝜆2−1)𝑓 − (𝑆 )𝑛,(𝜆2−1)𝑓‖
2
< 𝐶2(𝐾) ( ∑ |〈𝑓, 𝑔𝑘〉|

2

𝑛

𝑘=𝑚+1

)𝐴−1  → 0                      (3.4) 

as  𝑚, 𝑛 → ∞ .  Thus, {(𝑆 )𝑚,(𝜆2−1)𝑓}𝑚=1 
∞

represents a Cauchy sequence, so 

lim𝑚→∞(𝑆 )𝑚,(𝜆2−1)𝑓 = 𝐿(𝜆2−1)
∗ 𝑓 . By allowing 𝑛 → ∞  in (3.4), thus, it follows (𝑆 )𝑚,(𝜆2−1) 

culminates in 𝐿(𝜆2−1)
∗ 𝑓  uniformlyon compact subsets of the complex (𝜆2 − 1) − plane. 

Using the same justification as before results in  

‖𝐹(𝜆2 − 1)‖2 = ‖𝐿(𝜆2−1)
∗ 𝑓‖

2

= sup⏟
‖ℎ‖=1

|〈𝐿(𝜆2−1)
∗ 𝑓, ℎ〉|

2

                     

= |𝑃(𝜆2 − 1)|2 sup⏟
‖ℎ‖=1

(∑
|〈𝑓, 𝑔𝑘〉|

2

|(𝜆2 − 1) − (𝜆2 − 1)𝑘|2

∞

𝑘=1

)(∑|〈𝑔𝑘
∗ , ℎ〉|2

∞

𝑘=1

)      

≤  𝐴−1𝐶2(𝐾) (∑|〈𝑓, 𝑔𝑘〉|
2

∞

𝑘=1

)  ≤ 𝐴−1(𝐴 + 휀)𝐶2(𝑘)‖𝑓‖2,                                  (3.5) 

Which demonstrates that (𝜆2 − 1), 𝐿(𝜆2−1)
∗   is a continuous linear operator on ℋ for fixed. 

It’s true, the family of operators {𝐿(𝜆2−1)
∗ }

(𝜆2−1)∈𝐾
  is uniformly bounded, as shown by Eq. 

(3.5). 

We now demonstrate section (iii) (see [16]). It follows from (1) that 𝐹(𝜆2 − 1) is precisely 
described. The ongoing nature of it is now demonstrated. It is sufficient to demonstrate 

that  𝐺(𝜆2 − 1) = (1 𝑃(𝜆2 − 1))𝐹(𝜆2 − 1)⁄  since 𝑃(𝜆2 − 1) is complete function, it is 

continuous. Let (𝜆2 − 1)∗ ∈ ℂ − Λ  and represent the separation between (𝜆2 − 1)∗ and 

 Λ by 2𝛿. Let 

𝐷𝛿((𝜆
2 − 1)∗) =  {𝜆2 − 1: |(𝜆2 − 1) − (𝜆2 − 1)∗| ≤ 𝛿}  Represent the enclosed disc with a 

center (𝜆2 − 1)∗ and radius𝛿. In any case (𝜆2 − 1) ∈ 𝐷𝛿((𝜆
2 − 1)∗) ), we have 
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‖𝐺(𝜆2 − 1) − 𝐺((𝜆2 − 1)∗)‖2 = sup⏟
‖ℎ‖=1

|〈𝐺(𝜆2 − 1) − 𝐺((𝜆2 − 1)∗), ℎ〉|2

≤ sup⏟
‖ℎ‖=1

(∑(
|(𝜆2 − 1)∗ − (𝜆2 − 1)|

|(𝜆2 − 1) − (𝜆2 − 1)𝑘||(𝜆2 − 1)∗ − (𝜆2 − 1)𝑘|
)

2∞

𝑘=1

|〈𝑓, 𝑔𝑘〉|
2)(∑|〈𝑔𝑘

∗ , ℎ〉|2
∞

𝑘=1

)

≤ 𝐴−1|(𝜆2 − 1)∗ − (𝜆2 − 1)|2∑(
1

|(𝜆2 − 1) − (𝜆2 − 1)𝑘||(𝜆2 − 1)∗ − (𝜆2 − 1)𝑘|
)
2∞

𝑘=1

|〈𝑓, 𝑔𝑘〉|
2

≤ 𝐴−1𝛿−4(𝐴 + 휀)‖𝑓‖2|(𝜆2 − 1)∗ − (𝜆2 − 1)|2, 

or 

‖𝐺((𝜆2 − 1)) − 𝐺((𝜆2 − 1)∗)‖ ≤ ((𝐴 + 휀) 𝐴)⁄
1
2⁄
‖𝑓‖

𝛿2
|(𝜆2 − 1)∗ − (𝜆2 − 1)| → 0 as  

(𝜆2 − 1) → (𝜆2 − 1)∗. Since 𝐹(𝜆2 − 1) is continuous for each (𝜆2 − 1) ∈ ℂ − Λ   and 

lim
(𝜆2−1)→(𝜆2−1)𝑛

𝐹(𝜆2 − 1) = 𝐹((𝜆2 − 1)𝑛) = 𝑃′ ((𝜆2 − 1)𝑛)〈𝑓, 𝑔𝑛〉𝑔𝑛
∗ ,                    (3.6) 

Anywhere 𝐹  is continuous. After (3.1) and (3.6), Eq. (3.2) is logical conclusion. 

Corollary2. Let 𝐿∗ and {𝑔n}n=1
∞  be the normalized eigenvectors of a self-adjoint, compact 

operator on ℋ a one-to-one basis. Define  𝐿(𝜆2−1)
∗  as before whatever the 

sequence {(𝜆2 − 1)n}n=1
∞  meeting Theorem 1’s prerequisite. Next, for any 𝑓 ∈ ℋ, 

𝐹(𝜆2 − 1) = 𝐿(𝜆2−1)
∗ 𝑓 = ∑

𝑃(𝜆2 − 1)

((𝜆2 − 1) − (𝜆2 − 1)𝑘)𝑃′((𝜆2 − 1)𝑘 )
𝐹(

∞

𝑛=1

(𝜆2 − 1)𝑘 ). 

Proof. The orthonormal basis is formed by the eigenvectors of 𝐿∗, as a result, they create 

a precise, frame limits are tight and equal to 1 and  𝑔𝑛
∗ = 𝑔𝑛. 

Let’s  ℋ = 𝐿2(𝐼) make an exception, in which  𝐼 = [𝑎;  𝑎 + 휀] ,   − ∞ < 𝑎 < 𝑎 + 휀 < ∞ , and 

(𝐿∗𝑓)(𝑥𝑛) = ∫ 𝐾(𝑥𝑛, 휁)𝑓(휁)𝑑휁 ,       𝑓 ∈ 𝐿
2

𝑎+

𝑎

(𝐼). 

Should K be symmetric, actual, and in 𝐿2(𝑄), in which 𝑄 = 𝐼 × 𝐼, afterward,  𝐿∗ a small 

self-adjoint operator is in 𝐿2(𝐼) operation. Moreover, if the equation 

∫ 𝐾(𝑥𝑛, 휁)𝑓(휁)𝑑휁 = 0
𝑎+

𝑎

 

Only requires a simple solution 𝑓 = 0, the eigenfunctions follow {𝑔𝑛}𝑛=1
∞  of   𝐿∗  provide 

one that is normal foundation for 𝐿2(𝐼), the following sampling theorem is also available: 

If any sequence of numbers {(𝜆2 − 1)𝑛}𝑛=1
∞  fulfilling Theorem 1’s presumption 

∫ 𝑓(𝑥𝑛)𝑅(𝑥𝑛, 휁, 𝜆
2 − 1)𝑑(𝑥𝑛),

𝑎+

𝑎

 

Where  
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𝑅(𝑥𝑛, 휁, 𝜆
2 − 1) = 𝑃(𝜆2 − 1)∑

𝑔𝑛(𝑥𝑛)𝑔𝑛(휁)

((𝜆2 − 1) − (𝜆2 − 1)𝑛)

∞

𝑛=1

, 

휁 is a fixed point in I, therefore 

𝐹(𝜆2 − 1) = ∑𝐹((𝜆2 − 1)𝑛)
𝑃(𝜆2 − 1)

((𝜆2 − 1) − (𝜆2 − 1)𝑛)𝑃′((𝜆2 − 1)𝑛)

∞

𝑛=1

 . 

When the (𝜆2 − 1)𝑛 as the eigenvalues of the 𝐿∗,  𝑅 𝑃⁄   turns into the resolvent connected 
to the integral equation, and in the case of self-adjoint boundary-value issues, they create 
the Green’s function for issue; see (1.10). 

Its eigen-vectors are 𝐿∗ form a precise tiny frame, which can be used to replace the 
presumption that 𝐿∗  is self-adjoint. This is the case, for instance, when 𝐿∗ is connected to 
particular boundary-value issues that are not self-adjoint; see [14]. 
 
4. FORMULA OF INVERSION  

In this section, we employ the Bochner integral of  𝐹 to obtain (see [16]) a formula for the 
vector-valued function’s inversion 𝐹(𝜆2 − 1)  Theorem1 establishes this. To achieve this, 

we must limit the sequence growth rate {(𝜆2 − 1)𝑛}𝑛=1
∞  and mandate that  ±∞  it have only 

limit points.  

Theorem3. (Refer to [17]) Consider {(𝜆2 − 1)n }n∈𝑍 a series of actual numbers without a 
limit point that is finite such that 

supn∈𝑍|(𝜆
2 − 1)𝑛 − (𝑛𝜋 𝜎)⁄ | <

𝜋
4𝜎 ,       𝜎 > 0,

 
 

And allow  

𝑃(𝜆2 − 1) = ((𝜆2 − 1) − (𝜆2 − 1)0)∏(1 −
(𝜆2 − 1)

(𝜆2 − 1)𝑛
)

∞

𝑛=1

(1 −
(𝜆2 − 1)

(𝜆2 − 1)−𝑛
), 

With  

∫ |
𝑃(𝜆2 − 1)

(𝜆2 − 1) − (𝜆2 − 1)𝑛
|

2∞

−∞

𝑑(𝜆2 − 1) ≤ 𝐷 < ∞      for all  𝑛. 

So, if 

𝐹(𝜆2 − 1) = 𝑃(𝜆2 − 1) ∑
〈𝑓, 𝑔𝑛〉

((𝜆2 − 1) − (𝜆2 − 1)𝑛)
𝑔𝑛
∗

∞

𝑛=−∞

,         𝑓 ∈ ℋ, 

where  {𝑔𝑛}𝑛∈𝑍  and {𝑔𝑛
∗ }𝑛∈𝑍  retain their previous meaning, then 

𝑓 = lim
𝑁→∞

∫ 𝑓(𝜆2 − 1)𝐾𝑁

∞

−∞

(𝜆2 − 1)𝐷(𝜆2 − 1),                                                  (4.1) 
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Where 

𝐾𝑁(𝜆
2 − 1) =

1

2𝜋
∑

(𝐴 + 휀)𝑘(𝜆
2 − 1)

𝑃′((𝜆2 − 1)𝑘)

𝑁

𝑘=−𝑁

, 

And 

(𝐴 + 휀)𝑘(𝜆
2 − 1) = ∫ 𝑒𝑖(𝜆

2−1)𝑘𝑥𝑛𝑒𝑖(𝜆
2−1)𝑥𝑛 

𝜎

−𝜎

𝑑(𝑥𝑛). 

Proof. Lemma 16.2 on page 57 and Theorem 18 on page 48 in [8] lead us to believe that 

a collection of operations occurs {ℎ𝑛(𝑥𝑛)}𝑛∈𝑍  such that 

𝑃(𝜆2 − 1)

((𝜆2 − 1) − (𝜆2 − 1)𝑛)𝑃′((𝜆2 − 1)𝑛)
= ∫ ℎ𝑛

𝜎

−𝜎

(𝑥)𝑒𝑖(𝜆
2−1)𝑥𝑛𝑑(𝑥𝑛),                                     (4.2) 

and 

∫ ℎ𝑛(𝑥𝑛)𝑒
𝑖(𝜆2−1)𝑚𝑥𝑛𝑑(𝑥𝑛) = {

0   if  𝑛 ≠ 𝑚,
1   if  𝑛 ≠ 𝑚.

𝜎

−𝜎

                                        (4.3) 

Set  

(𝐴 + 휀)𝑛(𝜆
2 − 1) = ∫ 𝑒𝑖(𝜆

2−1)𝑚𝑥𝑛𝑒−𝑖(𝜆
2−1)𝑥𝑛𝑑(𝑥𝑛)

𝜎

−𝜎

;                                                    (4.4) 

hence 

𝑒𝑖(𝜆
2−1)𝑛𝑥𝑛𝜒[−𝜎,𝜎](𝑥𝑛) =

1

2𝜋
∫ (𝐴 + 휀)𝑛

∞

−∞

(𝜆2 − 1)𝑒𝑖(𝜆
2−1)𝑥𝑛𝑑(𝜆2 − 1), 

where  𝜒[−𝜎,𝜎]  is the defining trait of  [−𝜎, 𝜎] and according to the integral converges 𝐿2. 

Let 

𝐾𝑁(𝜆
2 − 1) =

1

2𝜋
∑

(𝐴 + 휀)𝑘(𝜆
2 − 1)

𝑃′((𝜆2 − 1)𝑘)

𝑁

𝑘=−𝑁

. 

Parseval’s equality and (4.2)-(4.4), give us 

1

2𝜋
∫

𝑃(𝜆2 − 1)(𝐴 + 휀)𝑘(𝜆
2 − 1)

((𝜆2 − 1) − (𝜆2 − 1)𝑛)𝑃′((𝜆2 − 1)𝑛)

∞

−∞

𝑑(𝜆2 − 1) = ∫ ℎ𝑛(𝑥𝑛)
𝜎

−𝜎

𝑒𝑖(𝜆
2−1)𝑘𝑥𝑛𝑑(𝑥𝑛)

= 𝛿𝑛,𝑘.                                                                                                                          (4.5) 

As a result, by (3.2) and (4.4), we get 
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                      ∫ 𝐹(𝜆2 − 1)𝐾𝑁(𝜆
2 − 1)𝑑(𝜆2 − 1)

∞

−∞

= ∑ ∑
𝐹((𝜆2 − 1)𝑛)

𝑃′((𝜆2 − 1)𝑛)

𝑁

𝑘=−𝑁

∞

𝑛=−∞

(
1

2𝜋
∫

𝑃(𝜆2 − 1)𝐵𝑘(𝜆
2 − 1)

((𝜆2 − 1) − (𝜆2 − 1)𝑛)𝑃′((𝜆2 − 1)𝑛)
𝑑(𝜆2

∞

−∞

− 1)) = ∑
𝐹((𝜆2 − 1)𝑛)

𝑃′((𝜆2 − 1)𝑛)

𝑁

𝑛=−𝑁

= ∑ 〈𝑓, 𝑔𝑛〉

𝑁

𝑛=−𝑁

𝑔𝑛
∗  ,                                                 (4.6)  

Where the final equality is obtained from (3.6). The Bochner integrals dominated 
convergence theorem ([12], p. 35) states that it is possible to swap the integration and 
summation signs  

∫ ‖𝐹(𝜆2 − 1)‖2𝑑(𝜆2 − 1) ≤ 𝐴−1
∞

−∞

∑|〈𝑓, 𝑔𝑛〉|
2

∞

−∞

∫ |
𝑃(𝜆2 − 1)

(𝜆2 − 1) − (𝜆2 − 1)𝑛
|

2

𝑑(𝜆2 − 1)
∞

−∞

≤ 𝐴−1(𝐴 + 휀)𝐷‖𝑓‖2 < ∞. 

Using the limit in (4.6) as 𝑁 → ∞  produces (4.1). 

In the event that the series 1 2𝜋 ∑ (𝐴 + 휀)𝑘(𝜆
2 − 1) 𝑃′((𝜆2 − 1)𝑘⁄∞

𝑘=−∞⁄ )  ends up an 

integrable square function  𝐾(𝜆2 − 1) ,then (4.1) becomes true 

𝑓 = ∫ 𝐹(𝜆2 − 1)𝐾(𝜆2 − 1)𝑑(𝜆2 − 1)
∞

−∞

. 

In concluding, we would like to readers that the sampling locations {(𝜆2 − 1)𝑘}  are not 
always eigenvalues of a boundary-value issue, as we noted in Sec.3. It is noteworthy that 
the validity of the points is not yet known. 

(𝜆2 − 1)𝑛 = {
𝑎𝑛 + (𝑎 + 휀),                𝑛 =  0,1,2, … ,
𝑎𝑛 + 𝑐 ,                        𝑛 = −1,−2,… ,

 

Hence, 𝑎 > 0 , (𝑎 + 휀) ≠ 𝑐 , are any boundary-value problem’s eigenvalues; nonetheless, 
the [16] just discovered  a sampling theorem of the type of  Kramer employing these 
locations as points for sampling. 
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