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Abstract  

This work examines the issue of inclusion in a real-ordered Hilbert space, specifically focusing on the 
Yosida approximation operator, and XOR-operator. This topic is known as the Yosida variational inclusion 
problem. Our study primarily centers on examining the rapid convergence of the Yosida variational inclusion 
problem and the resolvent equation problem. Several algorithms have been enhanced to address both 
issues. We prove the existence and convergence of solutions for both problems. Two mathematical models 
are presented to demonstrate the efficacy of the approach.  

 
INTRODUCTION  

Hassouni and Moudafi researched a category of mixed variational inequalities involving 
single-valued mappings, which they referred to as variational inclusions. The variational 
inclusion issue can be defined as the task of identifying the points where the maximal 
monotone mappings have a value of zero. Various scholars have explored and concluded 
that variational inclusions encompass and extend the concepts of variational inequalities, 
equilibrium problems, optimization problems, complementarity problems, and issues 
related to Nash equilibrium, among others. The Yosida approximation operator, described 
in terms of the resolvent operator, is used to approximate the derivatives of convex 
functionals in Hilbert spaces. The Yosida approximation operator is commonly used to 
work with heat equations, wave equations, and heat flow, among other applications. 

The XOR logical operations are binary operations that take two Boolean operands and 
return true only if the operands differ. Therefore, it will yield a false result if the two 
operands possess identical values. The XOR-operation can be employed to verify the 
simultaneous falsehood of two conditions. The XOR-operation are extensively utilized in 
cryptography, where they produce parity bits to check for errors and ensure fault 
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tolerance. It is also used in hardware to generate pseudo-random numbers and in digital 
computing and linear separability applications. A way to use XOR- in cryptography is 
given below. 

Cryptograph. 

XOR Symbol 

⨁ 

USE OF EXCLUSIVE OR  GATE BITS RESULT 

0⨁0 = 0 Same Bit Zero 

1⨁1 = 0 Same Bit Zero 

1⨁0 = 1 Different  Bits One 

0⨁1 = 1 Different Bits One 

In this research, we focus on the Yosida inclusion problem involving the XOR-operation, 
and its accompanying resolvent equation problem, considering the significance of the 
facts above. We establish several iterative techniques for resolving both of the difficulties.  

Fundamental Tools  

Through this paper, we suppose that 𝒦 is called real order Hilbert Space equipped 

with the usual norm  ‖ . ‖ and inner product  〈.  , . 〉, 𝐶 ⊆ 𝒦 is called a closed convex cone, 

and  2𝒦 represent the set of all non-empty subsets of  𝒦.  

Definition 2.1.The relation “ ≤ ”  is called a partially ordered relation induced by the cone 
𝐶, provided   𝑎 ≤ 𝑏 holds if and only if 𝑎 − 𝑏 ∈ 𝐶, where 𝑎 and 𝑏 are said to be comparable 

if either 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 .The comparable elements are represented by 𝑎 ∝ 𝑏. 

Definition 2.2.In the sake of arbitrary elements  𝑎, 𝑏 ∈ 𝒦,consider lub{𝑎, 𝑏} and 
glb{𝑎, 𝑏} for the set {𝑎, 𝑏} exist, where lub means least upper bound which is denoted 

by ∨  and ∨  is called OR-operation.Again, glb means greatest lower bound which is 
denoted by ∧ and ∧ is called AND-operation.Then some binary operations are given 
below.        

(i) 𝑎 ∨ 𝑏 = 𝑙𝑢𝑏{𝑎, 𝑏} 

(ii) 𝑎 ∧ 𝑏 = 𝑔𝑙𝑏{𝑎, 𝑏} 

(iii) 𝑎⨁𝑏 = (𝑎 − 𝑏) ∨ (𝑏 − 𝑎), where ⨁  be an XOR operation. 

(iv) 𝑎⨀𝑏 = (𝑎 − 𝑏) ∧ (𝑏 − 𝑎), where ⨀  be an XNOR operation. 

Proposition 2.3. Suppose  ⨁  is called XOR operation and ⨀ is called XNOR 
operation. Then the following holds:        

(i)   𝑎⨀𝑎 = 0 , 𝑎⨀𝑏 = 𝑏⨀𝑎, 𝑎⨁𝑎 = 0, (𝑎⨁𝑏) = (𝑏⨁𝑎), (𝑎⨀𝑏) = −(𝑏⨁𝑎), 

(ii)   𝐼𝑓 𝑎 ∝ 0, 𝑡ℎ𝑒𝑛 − 𝑎⨁0 ≤ 𝑎 ≤ 𝑎⨁0  

(iii)   0 ≤ 𝑎⨁𝑏 , 𝐼𝑓 𝑎 ∝ 𝑏  

(iv)   𝐼𝑓 𝑎 ∝ 𝑏, 𝑡ℎ𝑒𝑛 𝑎⨁𝑏 = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎 = 𝑏  

(v)   ‖0⨁0‖ = ‖0‖ = 0 

(vi)   ‖𝑎⨁𝑏‖ ≤ ‖𝑎 − 𝑏‖ 

(vii) 𝑖𝑓 𝑎 ∝ 𝑏, 𝑡ℎ𝑒𝑛 ‖𝑎⨁𝑏‖ = ‖𝑎 − 𝑏‖ 
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Definition 2.4. Suppose, 𝔇: 𝒦 × 𝒦 → 2𝒦 is a multi-valued mapping. Then 

(i) 𝔇 is called a comparison mapping, if any 𝑣𝑎 ∈ 𝔇( . , 𝑎), 𝑎 ∝ 𝑣𝑎 and if 𝑎 ∝ 𝑏, then for 
any 𝑣𝑎 ∈ 𝔇( . , 𝑎)  and 𝑣𝑏 ∈ 𝔇( . , 𝑏), 𝑣𝑎 ∝  𝑣𝑏 ,   ∀, 𝑎, 𝑏 ∈ 𝒦   

(ii) The comparison mapping   𝔇 is called  𝛼 -non -ordinary difference mapping, if for 
each 𝑎, 𝑏 ∈ 𝒦, 𝑣𝑎 ∈ 𝔇( . , 𝑎) and 𝑣𝑏 ∈ 𝔇( . , 𝑏)such that ( 𝑣𝑎⨁𝑣𝑏) ⊕ ∝ (𝑎⨁𝑏) = 0                   

(iii) The comparison mapping  𝔇 is called 𝛾-ordered rectangular mapping, if there exists 
a constant 𝛾 > 0 and for each 𝑎, 𝑏 ∈ 𝒦,there exist  𝑣𝑎 ∈ 𝔇( . , 𝑎)  and 𝑣𝑏 ∈ 𝔇( . , 𝑏)   

such that    〈( 𝑣𝑎⨀𝑣𝑏) −  (𝑎⨁𝑏)〉 ≥ 𝛾‖𝑎⨁𝑏‖2          

(iv) 𝔇 is called a weak comparison mapping, if any 𝑎, 𝑏 ∈ 𝒦, 𝑎 ∝  𝑏, there exist 𝑣𝑎 ∈
𝔇( . , 𝑎)  and 𝑣𝑏 ∈ 𝔇( . , 𝑏) such that  𝑎 ∝  𝑣𝑎 ,  𝑏 ∝  𝑣𝑏 and  𝑣𝑎 ∝  𝑣𝑏  

(v) 𝔇 is called  𝜁 − 𝑤𝑒𝑎𝑘 ordered different comparison mapping if there exists a constant 
𝜁 > 0 such that for each 𝑎, 𝑏 ∈ 𝒦,there exist  𝑣𝑎 ∈ 𝔇( . , 𝑎)  and 𝑣𝑏 ∈ 𝔇( . , 𝑏) such that    
𝜁(𝑣𝑎 −  𝑣𝑏) ∝ (𝑎 − 𝑏)          

(vi) A weak comparison mapping 𝔇 is called (𝛾, 𝜁)-weak ordered rectangular different 

mapping, if 𝔇 is a  𝛾-ordered rectangular and   𝜁 − 𝑤𝑒𝑎𝑘 ordered different comparison 
mapping and [𝜏 + 𝜁𝔇( . , . )](𝒦) = 𝒦,    ∀, 𝜁 > 0.   

Definition 2.5. Suppose, 𝔇 ∶ 𝒦 × 𝒦 → 2𝒦 is a multi-valued mapping. The resolvent 

operator  R𝜏,𝜁
𝔇(.  ,   a)

∶ 𝒦 → 𝒦  is defined as R𝜏,𝜁
𝔇(.  ,   a)(𝑏) = [𝜏 + 𝜁𝔇( . , 𝑎)]−1(𝑏)  ∀, 𝑎, 𝑏 ∈ 𝒦,  (1)  

𝜏 is identity mapping and  𝜁 > 0 is a constant.                                                                   

Definition 2.6. The Yosida approximation operator  Y 𝜏,𝜁
𝔇(.  ,   a)

∶ 𝒦 → 𝒦  is defined as   

Y𝜏,𝜁
𝔇(.  ,   a)(𝑏) =

1

𝜁
[𝜏 − 𝑅(. , 𝑎)](𝑏) ,  ∀, 𝑎, 𝑏 ∈ 𝒦,                                                                       (2) 

𝜏 is identity mapping and  𝜁 > 0 is a constant. 

Lemma 2.7. Suppose, 𝔇 ∶ 𝒦 × 𝒦 → 2𝒦 is 𝛾-ordered rectangular multi-valued mapping 
for 

R 𝜏,𝜁
𝔇(.  ,   a)

 , Then we get, ‖R 𝜏,𝜁
𝔇(.  ,   a)(u) ⨁ R 𝜏,𝜁

𝔇(.  ,   a)
(𝑣)‖  ≤ 𝜃‖𝑢⨁𝑣‖,                                     (3) 

Where 𝜃 = 1

𝛾𝜁−1 
  , 𝜁 > 1

𝛾
     ∀, 𝑢, 𝑣 ∈ 𝒦                

Thus, the resolvent operator R 𝜏,𝜁
𝔇(.  ,   a)

 is Lipschitz-type continuous. 

Lemma 2.8. Suppose, 𝔇 ∶ 𝒦 × 𝒦 → 2𝒦 be (𝛾, 𝜁) weak-ordered rectangular different 

Multi-valued mapping with respect to R 𝜏,𝜁
𝔇(.  ,   a)

 , then we get, 

‖YI,𝜁
𝔇(.  ,   a)(u) ⨁ YI,𝜁

𝔇(.  ,   a)
(𝑣)‖  ≤ 𝜃′‖𝑢⨁𝑣‖, where 𝜃′ = 𝜁

𝛾𝜁−1 
  , 𝜁 > 1

𝛾
  , ∀, 𝑢, 𝑣 ∈ 𝒦               (4) 

That is, the Yosida approximation operator Y 𝜏,𝜁
𝔇( .  ,a)

 is Lipschitz-type continuous. 
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Statement of the problem and Iterative algorithm. 

Suppose 𝑝: 𝒦 → 𝒦  is a single-valued mapping and 𝔇 ∶ 𝒦 × 𝒦 → 2𝒦 is a multi-valued 

mapping and Y 𝜏,𝜁
𝔇(.  ,   a)

 is the Yosida approximation operator. To find the value 𝑎 ∈ 𝒦 such 

that  

0 ∈ Y 𝜏,𝜁
𝔇( .  ,   a)

(𝑎)⨁ 𝔇(𝑝(𝑎), 𝑎)                                                                                         (5) 

Where 𝜁 > 0 is a constant and 𝜏 is the identity mapping. 

If Y 𝜏,𝜁
𝔇(.  ,   a)

(𝑎) = 0 𝑎𝑛𝑑  𝔇(𝑝(𝑎), 𝑎) = 𝔇(𝑎), then problem (5) reduces to the problem of 

finding 

 𝑎 ∈ 𝒦 Such that  

0 ∈ 𝔇(𝑎),  Which is the fundamental problem of analysis that has been considered by 
Rockafellar.                                                             

Lemma 3.1. The Yosida variational inclusion problem (5) has a solution 𝑎 ∈ 𝒦 if and only 
if it satisfies the following equation 

𝑝(𝑎) = R 𝜏,𝜁
𝔇(.,a)

[𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎)]                                                                                    (6) 

Proof: Suppose 𝑎 ∈ 𝒦 satisfies the equation (6), Then  

𝑝(𝑎) = R 𝜏,𝜁
𝔇(.,a)

[𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎)]  

⇒ 𝑝(𝑎) = [ 𝜏 + 𝜁𝔇(. , 𝑎)]−1[𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎)]  [By (1)] 

⇒ 𝑝(𝑎)( 𝜏 + 𝜁𝔇(. , 𝑎)) = [𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎)]  

⇒ 𝑝(𝑎) + 𝜁𝔇(𝑝(𝑎), 𝑎) = 𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎)  

⇒ 𝔇(𝑝(𝑎), 𝑎)⨁𝔇(𝑝(𝑎), 𝑎) = Y 𝜏,𝜁
𝔇(.,a)

(𝑎)⨁𝔇(𝑝(𝑎), 𝑎)  [∵ 𝑎⨁𝑎 = 0] 

0 ∈ Y 𝜏,𝜁
𝔇(.,a)(𝑎)⨁𝔇(𝑝(𝑎), 𝑎) Which is the required Yosida inclusion problem (5) 

Now we establish the subsequent algorithm utilizing lemma 2.7 for solving the Yosida 
inclusion problem (5).                                                                                                              

Algorithm 3.2. Enumerate sequence {𝑎𝑛} by taking after the iterative method  

𝑝(𝑎𝑛+1) = R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)]    , for every 𝑎0 ∈ 𝒦                                            (7) 

𝜏 is the identity mapping, and 𝜁 > 0 is a constant.  
 
MAIN RESULT AND EXPERIMENT 

Theorem 3.3. Suppose 𝒦 is a real ordered Hilbert space, and 𝐶 is a cone, including 

partial ordering. Let, 𝔇 ∶ 𝒦 × 𝒦 → 2𝒦 is the multi-valued mapping such that 𝔇( . , 𝑎) is  𝛾-
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ordered rectangular and  (𝛾, 𝜁)-weak ordered rectangular different mapping in the first 

argument. Consider 𝑝: 𝒦 → 𝒦  is a single-valued mapping such that 𝑝 is Lipschitz 
continuous with constant 𝜁𝑝 and strongly monotone with constant 𝛿𝑝.Let us consider 

𝑎𝑛+1 ∝ 𝑎𝑛, 𝑝(𝑎𝑛+1)  ∝ 𝑝(𝑎𝑛), for 𝑛 = 0,1,2, … …and the subsequent axioms are fulfilled:  

‖R 𝜏,𝜁
𝔇(.  ,   𝑎𝑛)

(u) ⨁ R 𝜏,𝜁
𝔇(.  ,   𝑎𝑛+1)

(𝑢)‖  ≤ 𝜇‖𝑎𝑛⨁𝑎𝑛+1‖                                                                  (8) 

‖Y 𝜏,𝜁
𝔇(.  ,   𝑎𝑛)

(u) ⨁ Y 𝜏,𝜁
𝔇(.  ,   𝑎𝑛+1)

(𝑢)‖  ≤ 𝜇′‖𝑎𝑛⨁𝑎𝑛+1‖                                                                 (9) 

If satisfies this condition:  {𝜃𝜁𝑝+ 𝜇 + 𝜃𝜁( 𝜇′ + 𝜃′ ) < 𝛿𝑝                                                           (A) 

Where 𝜃 = 1

𝛾𝜁−1 
  ,𝜃′ = 𝜁

𝛾𝜁−1 
  , 𝜁 > 1

𝛾
        ∀, 𝑢, 𝑎𝑛, 𝑎𝑛+1, ∈ 𝒦 

Then the sequence {𝑎𝑛} is strong convergence to the solution 𝑎 ∈ 𝒦 of the Yosida 
variational inclusion problem (5) 

Proof:    we have, 

𝑝(𝑎𝑛+1) ⨁ 𝑝(𝑎𝑛)  ≥ 0 [∵ 𝑎⨁𝑏 ≥ 0, 𝐼𝑓 𝑎 ∝ 𝑏] 

  ⇒ R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)] ⨁R 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

[𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]   ≥ 0       

⇒ R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)] ⨁  R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]  

   ⨁R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]⨁ R 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

[𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)] ≥ 0    (10) 

Now we get from (iv) of proposition 2.3 

‖𝑝(𝑎𝑛+1) ⨁ 𝑝(𝑎𝑛)‖ ≤  

‖R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)] ⨁  R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖ +  

‖R 𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]⨁ R 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

[𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖           (11) 

Again, utilize (3), (8), and (11), we get, 

⇒ ‖𝑝(𝑎𝑛+1) ⨁ 𝑝(𝑎𝑛)‖ ≤ 𝜃 ‖[𝑝(𝑎𝑛) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)] ⨁  [𝑝(𝑎𝑛−1) + 𝜁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖   

+𝜇‖𝑎𝑛⨁𝑎𝑛−1‖  ≤ 𝜃‖𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1))‖ + 𝜃𝜁 ‖Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛) ⨁  Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖  

+𝜇‖𝑎𝑛⨁𝑎𝑛−1‖                                                                                                               (12)           

We have from the Lipschitz continuity of the Yosida variational inclusion problem and (i) 
of Proposition 2.3 

‖Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛) ⨁  Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖=  

‖Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛) ⨁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛)⨁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛) ⨁ Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖ 

 ≤ ‖Y 𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛) ⨁Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛)‖ + ‖Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛) ⨁ Y 𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)‖ 
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≤ 𝜇′‖𝑎𝑛⨁𝑎𝑛−1‖ + 𝜃′‖𝑎𝑛⨁𝑎𝑛−1‖  

≤ ( 𝜇′ + 𝜃′ )‖𝑎𝑛⨁𝑎𝑛−1‖                                                                                                (13)  

Combining (12) and (13), we get 

‖𝑝(𝑎𝑛+1) ⨁ 𝑝(𝑎𝑛)‖ ≤ 𝜃‖𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1))‖+ 𝜇‖𝑎𝑛⨁𝑎𝑛−1‖ + 𝜃𝜁( 𝜇′ + 𝜃′ )‖𝑎𝑛⨁𝑎𝑛−1‖ 

Since 𝑝 is strong convergence, then we get   

‖𝑝(𝑎𝑛+1) −  𝑝(𝑎𝑛)‖ ≤ 𝜃𝜁𝑝‖𝑎𝑛 − 𝑎𝑛−1‖+ 𝜇‖𝑎𝑛 − 𝑎𝑛−1‖ + 𝜃𝜁( 𝜇′ + 𝜃′ )‖𝑎𝑛 − 𝑎𝑛−1‖ 

⇒ ‖𝑝(𝑎𝑛+1) −  𝑝(𝑎𝑛)‖ ≤ {𝜃𝜁𝑝+ 𝜇 + 𝜃𝜁( 𝜇′ + 𝜃′ )}‖𝑎𝑛 − 𝑎𝑛−1‖                                          (14)                                                                             

Again, since  𝑝 is strongly monotone, we have  

‖𝑝(𝑎𝑛+1) −  𝑝(𝑎𝑛)‖ ≥ 𝛿𝑝‖𝑎𝑛+1 − 𝑎𝑛‖   

⇒  1

𝛿𝑝
‖𝑝(𝑎𝑛+1) −  𝑝(𝑎𝑛)‖ ≥ ‖𝑎𝑛+1 − 𝑎𝑛‖                                                                             (15)                                      

Joining (14) and (15), we get 

‖𝑎𝑛+1 − 𝑎𝑛‖ ≤ 1

𝛿𝑝
{𝜃𝜁𝑝+ 𝜇 + 𝜃𝜁( 𝜇′ + 𝜃′ )}‖𝑎𝑛 − 𝑎𝑛−1‖ 

⇒ ‖𝑎𝑛+1 − 𝑎𝑛‖ ≤ 𝑃(𝜃)‖𝑎𝑛 − 𝑎𝑛−1‖                                                                                       (16) 

Where, 𝑃(𝜃) = 1

𝛿𝑝
{𝜃𝜁𝑝+ 𝜇 + 𝜃𝜁( 𝜇′ + 𝜃′ )}, From condition (A), we have 𝑃(𝜃) ≤ 1 and 

consequently, from (16), it follows that{ 𝑎𝑛} is a Cauchy sequence in 𝒦. 

Since  𝒦 is complete, we may assume that. 𝑎𝑛 → 𝑎 ∈ 𝒦, 𝑛 → ∞.  This completes the 
proof. 
 
YOSIDA RESOLVENT EQUATION PROBLEM 

Now, we consider the subsequent resolvent equation problem, including XOR-operation. 

Find 𝑎, 𝑠 ∈ 𝒦  such that  

Y 𝜏,𝜁
𝔇(.,a)(𝑎)⨁𝜁−1J 𝜏,𝜁

𝔇(.,a)(𝑠) = 0                                                                                                 (17)                             

Where𝑠 = 𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑥), J 𝜏,𝜁

𝔇(.,a)
= [ 𝜏 − R 𝜏,𝜁

𝔇(.,a)
] 

 𝜏 is the identity mapping, and  𝜁> 0 is a constant.  

Proposition 4.1. The element  𝑎 ∈ 𝐻 is a solution to the Yosida variational inclusion 
problem including XOR-operation (5) if and only if 𝑎, 𝑠 ∈ 𝐻 be a solution of the Yosida 

resolvent equation problem including XOR-operation (17). Provided Y 𝜏,𝜁
𝔇(.,a)(𝑎) ∝ J 𝜏,𝜁

𝔇(.,a)(𝑠) 

Proof: Let 𝑎 ∈ 𝐻 be a solution to the Yosida variational inclusion problem including XOR-
operation (5). Then, by Lemma 3.1, it satisfies this equation:  

𝑝(𝑎) = R 𝜏,𝜁
𝔇(.,a)

[𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎)]  



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 43 Issue: 08-2024 
DOI: 10.5281/zenodo.13377957 

 

Aug 2024 | 262  

Since 𝑠 = 𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎) 

Then we get, 𝑝(𝑎) = R 𝜏,𝜁
𝔇(.,a)

(𝑠) 

Now we have, 𝑠 = R 𝜏,𝜁
𝔇(.,a)

(𝑠) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎) 

⇒ 𝑠 − R 𝜏,𝜁
𝔇(.,a)(𝑠) = 𝜁Y 𝜏,𝜁

𝔇(.,a)(𝑎)  

⇒ [ 𝜏 − R 𝜏,𝜁
𝔇(.,a)

](𝑠) = 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎)  

⇒ J 𝜏,𝜁
𝔇(.,a)

(𝑠) = 𝜁Y 𝜏,𝜁
𝔇(.,a)

(𝑎) , where,  J 𝜏,𝜁
𝔇(.,a)

= [ 𝜏 − R 𝜏,𝜁
𝔇(.,a)

] 

⇒ 𝜁−1J 𝜏,𝜁
𝔇(.,a)(𝑠) = Y 𝜏,𝜁

𝔇(.,a)(𝑎)  

⇒ Y 𝜏,𝜁
𝔇(.,a)(𝑎)⨁𝜁−1J 𝜏,𝜁

𝔇(.,a)(𝑠) = Y 𝜏,𝜁
𝔇(.,a)(𝑎)⨁Y 𝜏,𝜁

𝔇(.,a)(𝑎)    [∵ 𝑎⨁𝑎 = 0] 

Thus, we have      Y𝜏,𝜁
𝔇(.,a)(𝑎) ⨁ 𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) = 0, which is the required Yosida resolvent 

equation problem, including XOR operation (17). 

Conversely, let 𝑎, 𝑠 ∈ 𝒦 be the solution to the Yosida resolvent equation problem, 
including XOR-operation (17).  

That is, Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) = 0 

⇒ Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) = Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁Y𝜏,𝜁

𝔇(.,a)(𝑎)                                           [∵ 𝑎⨁𝑎 = 0] 

⇒ Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁Y𝜏,𝜁

𝔇(.,a)(𝑎)⨁𝜁−1J𝜏,𝜁
𝔇(.,a)(𝑠) = Y𝜏,𝜁

𝔇(.,a)(𝑎)⨁Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁Y𝜏,𝜁

𝔇(.,a)(𝑎)         [∵ 𝑎⨁𝑎 = 0]   

⇒ 𝜁−1J𝜏,𝜁
𝔇(.,a)(𝑠) = Y𝜏,𝜁

𝔇(.,a)(𝑎)  

⇒ J𝜏,𝜁
𝔇(.,a)(𝑠) = 𝜁Y𝜏,𝜁

𝔇(.,a)(𝑎)  

⇒ 𝜁Y𝜏,𝜁
𝔇(.,a)(𝑎) = [𝜏 − R𝜏,𝜁

𝔇(.,a)
](𝑠) 

⇒ 𝜁Y𝜏,𝜁
𝔇(.,a)(𝑎) = (𝑠) − R𝜏,𝜁

𝔇(.,a)(𝑠) 

⇒ 𝜁Y𝜏,𝜁
𝔇(.,a)(𝑎) = 𝑝(𝑎) + 𝜁Y𝜏,𝜁

𝔇(.,a)(𝑥) − R𝜏,𝜁
𝔇(.,a)

[𝑝(𝑎) + 𝜁Y𝜏,𝜁
𝔇(.,a)(𝑎)] 

  ⇒ 𝑝(𝑎) = R𝜏,𝜁
𝔇(.,a)

[𝑝(𝑎) + 𝜁Y𝜏,𝜁
𝔇(.,a)(𝑎)] 

It may be inferred from Lemma 3.1 that 𝑎 ∈ 𝒦 is a solution to the Yosida variational 
inclusion problem including XOR operations (5). We build the following methods for 
addressing resolvent equation issues, such as the XOR-operations (17), based on 
assertion (17). 
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Algorithm 4.2. Use the following approaches to compute the sequences {𝑎𝑛} and {𝑠𝑛} 
for every𝑎0, 𝑠0 ∈ 𝒦, we have  

𝑝(𝑎𝑛) = R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)                                                                                                                 (18)  

𝑠𝑛+1 = 𝑝(𝑎𝑛) + 𝜁Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛) ,                                                                                                 (19) 

𝜏 is identity mapping and  𝜁  > 0 is a constant and n = 0,1,2, … … … ..                           

By altering the Yosida resolvent equation problem, including XOR-operation (17). We 
propose a few techniques for solving resolvent equation problems, including XOR-
operation (17). 

That is, 𝑠 = R𝜏,𝜁
𝔇(.,a)(𝑠) + Y𝜏,𝜁

𝔇(.,a)(𝑥)⨁ 𝜁−1J𝜏,𝜁
𝔇(.,a)(𝑠) + J𝜏,𝜁

𝔇(.,a)(𝑠)                                               (20)   

Verification:   

Now we have, 𝑠 − R𝜏,𝜁
𝔇(.,a)(𝑠) = Y𝜏,𝜁

𝔇(.,a)(𝑎)⨁𝜁−1J𝜏,𝜁
𝔇(.,a)(𝑠) + J𝜏,𝜁

𝔇(.,a)(𝑠) 

⇒ [𝜏 − R𝜏,𝜁
𝔇(.,a)

](𝑠) = 𝜁Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) + J𝜏,𝜁
𝔇(.,a)(𝑠)  

⇒ J𝜏,𝜁
𝔇(.,a)(𝑠)⨁J𝜏,𝜁

𝔇(.,a)(𝑠) = Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) + J𝜏,𝜁
𝔇(.,a)(𝑠)⨁J𝜏,𝜁

𝔇(.,a)(𝑠)  

 ⇒ Y𝜏,𝜁
𝔇(.,a)(𝑥)⨁𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) = 0                          [∵ 𝑎⨁𝑎 = 0] 

Thus, Y𝜏,𝜁
𝔇(.,a)

(𝑎)⨁𝜁−1J𝜏,𝜁
𝔇(.,a)

(𝑠) = 0 

Utilizing (20), we build the techniques for solving Yosida resolvent equation problems 
including XOR-operation (17). 

Algorithm 4.3. Use the following approaches to compute the sequences {𝑎𝑛} and {𝑠𝑛} 
for every 𝑎0, 𝑠0 ∈ 𝒦, we have 

𝑝(𝑎𝑛) = R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)                                                                                                               (21)                                    

𝑠𝑛+1 = R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛) + Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛) + J𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)⨁ 𝜁−1J𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)                                       (22)                                           

Where 𝜏 is the identity mapping,  𝜁  > 0 is a constant and n = 0,1,2, … … … ..  

The resolvent equation problems can be rewritten for the positive step size  𝛿 using XOR-

operation (17) as another form. 𝑝(𝑎) = 𝑝(𝑎) ⨁  𝛿 [(𝑠 − R𝜏,𝜁
𝔇(.,a)

(𝑠)) − 𝜁Y𝜏,𝜁
𝔇(.,a)

(𝑎)]                             

(23)                                                   

Verification:  Now we have, 

  𝑝(𝑎)⨁𝑝(𝑎) = 𝑝(𝑎)⨁𝑝(𝑎) ⨁  𝛿 [(𝑠 − R𝜏,𝜁
𝔇(.,a)(𝑠)) − 𝜁Y𝜏,𝜁

𝔇(.,a)(𝑎)] [∵ 𝑎⨁𝑎 = 0] 

⇒ 0 = 𝛿[(𝑠 − R𝜏,𝜁
𝔇(.,a)(𝑠)) − 𝜁Y𝜏,𝜁

𝔇(.,a)(𝑎)]              

⇒ 𝛿 (𝑠 − R𝜏,𝜁
𝔇(.,a)(𝑠)) = 𝛿𝜁Y𝜏,𝜁

𝔇(.,a)(𝑎)              
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⇒ (𝑠 − R𝜏,𝜁
𝔇(.,a)(𝑠)) = 𝜁Y𝜏,𝜁

𝔇(.,a)(𝑎)       

⇒ J𝜏,𝜁
𝔇(.,a)(𝑠) = 𝜁Y𝜏,𝜁

𝔇(.,a)(𝑎)         

⇒  𝜁−1J𝜏,𝜁
𝔇(.,a)(𝑠) = Y𝜏,𝜁

𝔇(.,a)(𝑎)     

⇒ Y𝜏,𝜁
𝔇(.,a)(𝑎) ⨁  𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) = Y𝜏,𝜁
𝔇(.,a)(𝑎) ⨁ Y𝜏,𝜁

𝔇(.,a)(𝑎)]        [∵ 𝑎⨁𝑎 = 0] 

Thus Y𝜏,𝜁
𝔇(.,a)(𝑎) ⨁  𝜁−1J𝜏,𝜁

𝔇(.,a)(𝑠) = 0 

Utilizing (23), we build the following techniques for solving Yosida resolvent equation 
problems, including XOR-operation (17) below. 

Algorithm 4.4. Use the following approaches to compute the sequences {𝑎𝑛} and {𝑠𝑛} 
for every 𝑎0, 𝑠0 ∈ 𝒦, we have 

𝑝(𝑎𝑛+1) = 𝑝(𝑎)⨁δ[(𝑠𝑛 − R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)) − 𝜁Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)]                                                     (24)                

Where 𝜁, 𝛿 > 0 are constant, 𝜏 is the identity mapping and n = 0,1,2, … . … … .. 

Theorem 4.5. Suppose all the mappings and axioms of theorem 3.3 remain the same, 
then the Yosida resolvent equation problem including XOR-operation (17) has a solution 

𝑥, 𝑠 ∈ 𝒦 and the repetitional sequence {𝑎𝑛} and {𝑠𝑛}represented by algorithm (4.2) 
strongly converges to 𝑎 and 𝑠, respectively. Provided 𝑎𝑛+1 ∝ 𝑎𝑛, 𝑠𝑛+1 ∝ 𝑠𝑛 and 𝑝(𝑎𝑛)  ∝
𝑝(𝑎𝑛−1), where 𝑛 = 0,1,2, … … … 

Proof: we have from proposition (4.1), 

     ‖𝑠𝑛+1⨁𝑠𝑛‖ = ‖[𝑝(𝑎𝑛) + 𝜁Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)]⨁[𝑝(𝑎𝑛−1) + 𝜁Y𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖  

⇒ ‖𝑠𝑛+1⨁𝑠𝑛‖ ≤ ‖[𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1)] + 𝜁[Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)⨁Y𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖  

⇒ ‖𝑠𝑛+1⨁𝑠𝑛‖ ≤ ‖𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1)‖ + 𝜁 ‖Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)⨁Y𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖                        (25)                                                       

⇒ ‖𝑠𝑛+1 − 𝑠𝑛‖ ≤ ‖𝑝(𝑎𝑛) − 𝑝(𝑎𝑛−1)‖ + 𝜁 ‖Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)⨁Y𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑎𝑛−1)]‖                      (26)                                  

[ ∵ 𝑠𝑛+1 ∝ 𝑠𝑛 and 𝑝(𝑎𝑛) ∝ 𝑝(𝑎𝑛−1), for 𝑛 = 0,1,2, … … …]                                           

Now utilizing Lipschitz's continuity of 𝑝 and (13), then equation (26) obtains to  

⇒ ‖𝑠𝑛+1 − 𝑠𝑛‖ ≤ 𝜁𝑝‖𝑎𝑛 − 𝑎𝑛−1‖ + 𝜁( 𝜇′ + 𝜃′ )‖𝑎𝑛 − 𝑎𝑛−1‖  

[ ∵ 𝑝 is strong convergence and 𝑎𝑛+1 ∝ 𝑎𝑛 ]          

⇒ ‖𝑠𝑛+1 − 𝑠𝑛‖ ≤ {𝜁𝑝 + 𝜁( 𝜇′ + 𝜃′ )}‖𝑎𝑛 − 𝑎𝑛−1‖                                                                   (27)                          

We have, from (21) and (vi) of proposition 2.3 

‖𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1)‖ = ‖R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)⨁R𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑠𝑛−1)‖  
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 ⇒ ‖𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1)‖ = ‖R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)⨁R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛−1)⨁R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛−1)⨁R𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑠𝑛−1)‖ 

⇒ ‖𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1)‖ ≤ ‖R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛)⨁R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛−1)‖  

+ ‖R𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑠𝑛−1)⨁R𝜏,𝜁
𝔇(.,𝑎𝑛−1)

(𝑠𝑛−1)‖                                                                               (28) 

we get from Lemma (3), equations (8) and (28) 

‖𝑝(𝑎𝑛)⨁𝑝(𝑎𝑛−1)‖ ≤ 𝜃‖𝑠𝑛+1⨁𝑠𝑛‖ + 𝜇‖𝑎𝑛⨁𝑎𝑛−1‖                                                               (29) 

That is, ‖𝑝(𝑎𝑛) − 𝑝(𝑎𝑛−1)‖ ≤ 𝜃‖𝑠𝑛+1 − 𝑠𝑛‖ + 𝜇‖𝑎𝑛 − 𝑎𝑛−1‖                                              (30) 

Since 𝑝 is 𝛿𝑝- strongly monotone, we have  

‖𝑝(𝑎𝑛+1) −  𝑝(𝑎𝑛)‖ ≥ 𝛿𝑝‖𝑎𝑛+1 − 𝑎𝑛‖   

⇒  1

𝛿𝑝
‖𝑝(𝑎𝑛+1) −  𝑝(𝑎𝑛)‖ ≥ ‖𝑎𝑛+1 − 𝑎𝑛‖                                                                                (31)            

Combining (30) and (31) 

‖𝑎𝑛+1 − 𝑎𝑛‖ ≤ 1

𝛿𝑝
 𝜃‖𝑠𝑛+1 − 𝑠𝑛‖ +

1

𝛿𝑝
𝜇‖𝑎𝑛 − 𝑎𝑛−1‖  

⇒ ‖𝑎𝑛+1 − 𝑎𝑛‖ ≤ 𝜃

𝛿𝑝−𝜇
‖𝑠𝑛+1 − 𝑠𝑛‖                                                                                           (32) 

Combining (32) and (27) 

‖𝑠𝑛+1 − 𝑠𝑛‖ ≤
𝜃𝜁𝑝+𝜃𝜁( 𝜇′+𝜃′ )

𝛿𝑝−𝜇
‖𝑠𝑛 − 𝑠𝑛−1‖  

⇒ ‖𝑠𝑛+1 − 𝑠𝑛‖ ≤ 𝑆(𝜃)‖𝑠𝑛 − 𝑠𝑛−1‖    Where,  𝑆(𝜃) =  
𝜃𝜁𝑝+𝜃𝜁( 𝜇′+𝜃′) 

𝛿𝑝−𝜇
  

Using axioms (A), after that    𝑆(𝜃) < 1 and so {𝑠𝑛} is a Cauchy sequence in 𝒦. Thus, 

there exists  𝑠 ∈ 𝒦    such that. 𝑠𝑛 → 𝑠 ,𝑎𝑠 𝑛 → ∞. Moreover, from (32), obviously {𝑎𝑛} is 
a Cauchy sequence in 𝒦, then there exists 𝑎 ∈ 𝒦  such that  𝑎𝑛 → 𝑎  𝑎𝑠 𝑛 → ∞. 

Using the continuity of operators 𝑝, 𝔇, and Y𝜏,𝜁
𝔇(.  ,   .)

 , We have  𝑠 = 𝑝(𝑎) + 𝜁Y 𝜏,𝜁
𝔇(.,a)(𝑎) which 

is the same result of preposition 4.1. 
 
CONVERGENCE EXPERIMENT  

Experiment 1. Suppose 𝒦 = ℝ involving inner product〈. , . 〉 𝑎𝑛𝑑 ‖  .  ‖. Again, consider 

 𝑝 ∶ 𝒦 → 𝒦  be a single-valued mapping and 𝔇 ∶ 𝒦 × 𝒦 → 2𝒦 be a multi-valued mapping 
such that,  𝔇(𝑎, 𝑏) = { 7

12
 𝑎 + 𝑏}  

𝑝(𝑎) = 9

7
 𝑎 − 1, ∀𝑎, 𝑏 ∈ 𝒦   

(i). Suppose 𝔇 is   𝛾-ordered rectangular mapping, then there exist 𝑣𝑎 = 19

12
 𝑎 ∈ 𝔇( . , 𝑎)   

  and  𝑣𝑏 = 19

12
 𝑏 ∈ 𝔇( . , 𝑏) we get          

〈( 𝑣𝑎⨀𝑣𝑏) − (𝑎⨁𝑏)〉 = 〈( 𝑣𝑎⨁𝑣𝑏), (𝑎⨁𝑏)〉 
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                                                       = 〈19

12
𝑎⨁19

12
𝑏, 𝑎⨁𝑏〉 

                                                       =
19

12
〈𝑎⨁𝑏, 𝑎⨁𝑏〉 

                                                       =
19

12
‖𝑎⨁𝑏‖2 

                                                       ≥
1

5
‖𝑎⨁𝑏‖2 

Thus, 𝔇 is   𝛾 =
1

5
 - ordered rectangular mapping. 

a. Suppose 𝑝 is 𝜁𝑝- Lipschitz continuous and  𝛿𝑝- strongly monotone mapping.  

We have ‖𝑝(𝑎) − 𝑝(𝑏)‖ = ‖(9

7
𝑎 − 1) − (9

7
𝑏 − 1)‖ 

                                       = 9

7
‖𝑎 − 𝑏‖ 

                                        ≤ 3‖𝑎 − 𝑏‖ 

Hence, 𝑝 is 𝜁𝑝 = 3   - Lipschitz continuous mapping. 

And  〈𝑝(𝑎) − 𝑝(𝔇), 𝑎 − 𝑏〉 = 〈(9

7
𝑎 − 1) − (9

7
𝑏 − 1)〉 

                                       = 9

7
〈𝑎 − 𝑏, 𝑎 − 𝑏〉 

                                       ≥
1

7
‖𝑎 − 𝑏‖2 

Thus, 𝑝 is 𝛿𝑝 =
1

7
 - strongly monotone mapping. 

b. Consider 𝜁 = 6, then evaluate the resolvent operator as 

                  R𝜏,𝜁
𝔇(.,a)(𝑎)    = [𝜏 + 𝜁𝔇(. , 𝑎)]−1(𝑎)   

                                   = [𝑎 + 𝜁𝔇(𝑎, 𝑎)]−1   

                                   = [𝑎 + 6 × 19

12
𝑎]−1   

                                   = [21

2
𝑎]−1   

                                   = 2

21
𝑎  

𝑎𝑛𝑑 ‖ R𝜏,𝜁
𝔇(.,a)

(𝑎)⨁ R𝜏,𝜁
𝔇(.,a)

(𝑏)‖ = ‖ 2

21
𝑎⨁ 2

21
𝑏‖  

                                              =
2

21
‖𝑎⨁𝑏‖ 

                                              ≤ 5‖𝑎⨁𝑏‖ 

That is, 𝜃 = 1

𝛾𝜁−1 
 = 5 , 𝑤ℎ𝑒𝑟𝑒, 𝜁 = 6, 𝛾 =

1

5
   then R𝜏,𝜁

𝔇(.,a)
 is Lipschitz continuous. 

c. Again, we have from the Yosida approximation operator. 

Y𝜏,𝜁
𝔇(.,a)(𝑎) =

1

𝜁
[𝜏 − 𝑅(. , 𝑎)](𝑎)   
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                 =
1

𝜁
[𝑎 − 𝑅(𝑎, 𝑎)]  

                 =
1

6
[𝑎 − 2

21
𝑎] 

                 =
1

6
× 19

21
𝑎 

                 = 19

126
𝑎 

And ‖ Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁ Y𝜏,𝜁

𝔇(.,a)(𝑏)‖ = ‖ 19

126
𝑎⨁ 19

126
𝑏‖ 

                                             = 19

126
‖𝑎⨁𝑏‖ 

                                             ≤ 30‖𝑎⨁𝑏‖ 

That is, Y𝜏,𝜁
𝔇(.,a)(𝑎) is Lipschitz continuous with constant𝜃′ = 𝜁

𝛾𝜁−1 
=  30, where𝜁 = 6, 𝛾 =

1

5
 

d. We get from technique (7).  

𝑝(𝑎𝑛+1) = R𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛) + 𝜁Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)]  

             ⇒ 9

7
 𝑎𝑛+1 − 1 = R𝜏,𝜁

𝔇(.,𝑎𝑛)
[9

7
 𝑎𝑛 − 1 + 6 × 19

126
 𝑎𝑛] 

             ⇒  𝑎𝑛+1 = 0.16222𝑎𝑛 + 0.70377    

Now, using MATLAB-R2024a, we get an excellent graph for various initial values 𝑎0 =
 −3, −1, 1, 2.5, 4, the sequence { 𝑎𝑛} is swiftly converged at 𝑎⋇ =  0.83999(up to five 
decimals) after six iterations. The diagram and estimate chart are given below. 

Estimate Chart: 

No. of 
iterations 

 𝒂𝟎= -3.0 

 𝒂𝒏 

 𝒂𝟎= -1.0 

 𝒂𝒏 

 𝒂𝟎= 1.0 

 𝒂𝒏 

 𝒂𝟎= 2.5 

 𝒂𝒏 

 𝒂𝟎= 4.0 

 𝒂𝒏 

1 0.21710 0.54150 0.86590 1.10920 1.35250 

2 0.73891 0.79153 0.84415 0.88361 0.92308 

3 0.82355 0.83209 0.84062 0.84702 0.85342 

4 0.83728 0.83866 0.84005 0.84109 0.84213 

5 0.83951 0.83973 0.83996 0.84012 0.84029 

6 0.83987 0.83990 0.83994 0.83997 0.84000 

7 0.83993 0.83993 0.83994 0.83994 0.83995 

8 0.83994 0.83994 0.83994 0.83994 0.83994 

9 0.83994 0.83994 0.83994 0.83994 0.83994 

13 0.83994 0.83994 0.83994 0.83994 0.83994 

15 0.83994 0.83994 0.83994 0.83994 0.83994 

17 0.83994 0.83994 0.83994 0.83994 0.83994 

19 0.83994 0.83994 0.83994 0.83994 0.83994 
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Graphical Representation: 

 

Diagram: 1 

Experiment 2. Consider  𝒦 = ℝ involving the inner product〈. , . 〉 𝑎𝑛𝑑 ‖  .  ‖. Again, 

consider  𝑝 ∶ 𝒦 → 𝒦  be a single-valued mapping and  𝔇: 𝒦 × 𝒦 → 2𝒦 be a multi-valued 
mapping such that     𝔇(𝑎, 𝑏) = { 5

9
 𝑎 + 𝑏}  and 𝑝(𝑎) = 7

5
 𝑎 − 1, ∀𝑎, 𝑏 ∈ 𝒦       

(a) Consider 𝔇 is 𝛾-ordered rectangular mapping, then there exist 𝑣𝑎 = 14

9
𝑎 ∈ 𝔇( . , 𝑎)  

and  𝑣𝑏 = 14

9
𝑏 ∈ 𝔇( . , 𝑏) we get         

 〈( 𝑣𝑎⨀𝑣𝑏) − (𝑎⨁𝑏)〉 = 〈( 𝑣𝑎⨁𝑣𝑏), (𝑎⨁𝑏)〉 

                                                      = 〈
14

9
𝑎⨁14

9
𝑏, 𝑎⨁𝑏〉 

                                                      =
14

9
〈𝑎⨁𝑏, 𝑎⨁𝑏〉 

                                                      =
14

9
‖𝑎⨁𝑏‖2 

                                                       ≥
1

2
‖𝑎⨁𝑏‖2 

Thus, 𝔇 is   𝛾 =
1

2
 - ordered rectangular mapping. 

a. Suppose 𝑝 is 𝜁𝑝- Lipschitz continuous and 𝛿𝑝- strongly monotone mapping.  

                               We have ‖𝑝(𝑎) − 𝑝(𝑏)‖ = ‖( 7
5 

 𝑎 − 1) − ( 7

5
 𝑏 − 1)‖ 

                                                                         = 7
5

 ‖𝑎 − 𝑏‖ 

                                                                         ≤ 2 ‖𝑎 − 𝑏‖ 
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Hence, 𝑝 is 𝜁𝑝 = 3 - Lipschitz continuous mapping. 

And  〈𝑝(𝑎) − 𝑝(𝑏), 𝑎 − 𝑏〉 = 〈( 7
5
 𝑎 − 1) − ( 7

5
 𝑏 − 1)〉 

                                         = 7
5
 〈𝑎 − 𝑏, 𝑎 − 𝑏〉 

                                         ≥
1

5
‖𝑎 − 𝑏‖2 

Thus, 𝑝 is 𝛿𝑝 =
1

5
 - strongly monotone mapping 

b. Consider 𝜁 = 3, then evaluate the resolvent operator as 

R𝜏,𝜁
𝔇(.  ,a)(𝑎) = [𝜏 + 𝜁𝔇(. , 𝑎)]−1(𝑎)   

                = [𝑎 + 𝜁𝔇(𝑎, 𝑎)]−1   

                = [𝑎 + 3 ×
14

9
𝑎]−1   

                = [17

3
𝑎]−1   

                = 3

17
𝑎  

𝑎𝑛𝑑 ‖ R𝜏,𝜁
𝔇(.,a)(𝑎)⨁ R𝜏,𝜁

𝔇(.,a)(𝑏)‖ = ‖ 3

17
𝑎 ⨁ 

3

17
𝑏‖  

                                              =
3

17
‖𝑎⨁𝑏‖ 

                                              ≤ 2‖𝑎⨁𝑏‖ 

That is,𝜃 = 1

𝛾𝜁−1 
 = 2 , 𝑤ℎ𝑒𝑟𝑒, 𝜁 = 3,𝛾 =

1

2
, thus R𝜏,𝜁

𝔇(.,a)
 is Lipschitz continuous. 

c. Again, we have from the Yosida approximation operator. 

Y𝜏,𝜁
𝔇(.,a)(𝑎) =

1

𝜁
[𝜏 − 𝔇(. , 𝑎)](𝑎)   

                 =
1

𝜁
[𝜏 − 𝑅(𝑎 , 𝑎)] 

                 =
1

3
[𝑎 − 3

17
𝑎] 

                 =
1

3
× 14

17
𝑎 

                 = 14

51
 𝑎 

And ‖ Y𝜏,𝜁
𝔇(.,a)(𝑎)⨁ Y𝜏,𝜁

𝔇(.,a)(𝑏)‖ = ‖14

51
 𝑎⨁14

51
 𝑏‖ 

                                              = 14

51
 ‖𝑎⨁𝑏‖ 

                                              ≤ 6‖𝑎⨁𝑏‖ 

That is, Y𝜏,𝜁
𝔇(.,a)(𝑎) is Lipschitz continuous with constant  𝜃′ = 𝜁

𝛾𝜁−1 
=  6 where,𝜁 = 3, 𝛾 =

1

2
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d. We get from technique (8)  

𝑝(𝑎𝑛+1) = R𝜏,𝜁
𝔇(.,𝑎𝑛)

[𝑝(𝑎𝑛) + 𝜁Y𝜏,𝜁
𝔇(.,𝑎𝑛)

(𝑎𝑛)]  

            ⇒ 7

5
 𝑎𝑛+1 − 1 =

3

17
[7

5
 𝑎𝑛 − 1 + 3 × 14

51
 𝑎𝑛] 

            ⇒  𝑎𝑛+1 = 0.28022𝑎𝑛 + 0.58822   

Again, using MATLAB-R2024a, we get an excellent graph for various initial values 𝑎0 =
 −4, −2, 3, 6, the sequence { 𝑎𝑛} is swiftly converged at 𝑎⋇ =  0.81717 (up to five 
decimals) after nine iterations. The diagram and estimate chart are given below. 

Estimate Chart: 

No. of iterations 
 𝒂𝟎= -3.0 

 𝒂𝒏 

 𝒂𝟎= -1.0 

 𝒂𝒏 

 𝒂𝟎= 1.0 

 𝒂𝒏 

 𝒂𝟎= 2.5 

 𝒂𝒏 

1 -0.53260 0.02780 1.42881 2.26943 

2 0.43897 0.59599 0.98855 1.22412 

3 0.71120 0.75520 0.86519 0.93119 

4 0.78748 0.79981 0.83063 0.84912 

5 0.80885 0.81231 0.82094 0.82612 

6 0.81652 0.81581 0.81823 0.81968 

7 0.81652 0.81679 0.81747 0.81968 

8 0.81699 0.81706 0.81725 0.81737 

9 0.81712 0.81714 0.81719 0.81723 

11 0.81717 0.81717 0.81717 0.81717 

13 0.81717 0.81717 0.81717 0.81717 

15 0.81717 0.81717 0.81717 0.81717 

17 0.81717 0.81717 0.81717 0.81717 

19 0.81717 0.81717 0.81717 0.81717 

Graphical Representation: 

 

Diagram: 2 
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CONCLUSION 

A problem of inclusion is presented in a real ordered Hilbert space using the Yosida 
approximation operator, a multi-valued mapping, a single-valued mapping, and an XOR-
operator. The study also includes a problem with an equipotential resolvent equation with 
the XOR operators. Certain algorithms are specifically designed to address the Yosida 
inclusion problem and solve equations that involve the XOR-operator. Existence and 
convergence outcomes are demonstrated for each issue. Both mathematical models 
exhibit rapid convergence, which contributes to the attainment of our optimal solution. 
 
References 

1) M. Abbas, H. Iqbal, and J. C. Yao, A new iterative algorithm for the approximation of fixed points of 
multi-valued generalized α-nonexpansive mappings, J. Nonlinear Convex Anal. 22 (2021), 471–486. 

2) Mohammad Akram, Existence and Iterative Approximation of Solution for Generalized Yosida 
Inclusion Problem, Iranian Journal of Mathematical Sciences and Informatics, Vol. 15, No. 2 (2020), 
pp 147-161 

3) Ahmad, C. T. Pang, R. Ahmad and M. Ishtyak, System of Yosida inclusions involving XOR-operation, 
J. Nonlinear Convex Anal. 18 (2017), 831–845. 

4) Ali, R. Ahmad and C.-F. Wen Cayley inclusion problem involving XOR-operation, Mathematics 2019 
(2019): 302. 

5) M. Ayaka and Y. Tomomi, Applications of the Hille-Yosida theorem to the linearized equations of 
coupled sound and heat flow, AIMS Mathematics 1 (2016), 165–177. 

6) Rais Ahmad, Mohd Ishtyak, Arvind Kumar Rajpoot and Yuanheng Wang, Solving System of Mixed 
Variational Inclusions Involving Generalized Cayley Operator and Generalized Yosida Approximation 
Operator with Error Terms in q-Uniformly, Mathematics, 2022, 10, 4131 

7) S. S. Chang, Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 248, (2000), 
438–454. 

8) S. S. Chang, J. K. Kim, and K. H. Kim, on the existence and iterative approximation problems of 
solutions for set-valued variational inclusions in Banach spaces, J. Math anal. Appl. 268 (2002), 89–
108. 

9) S. Chang, J. C. Yao, L. Wang, M. Liu, and L. Zhao, on the inertial forward-backward splitting technique 
for solving a system of inclusion problems in Hilbert spaces, Optimization 70 (2021), 2511–2525. 

10) F. Choug, A geometric note on the Cayley transform, in A spectrum of Mathematics: Essays presented 
to H.G. Forder, J.C. Butcher (ed.), Auckland University Press., Pages 85, 5 

11) E.R. Davies, Computer and Machine Vision: Theory, Algorithms, Practicalities, Academic Press, 1990. 

12) De, Hill-Yosida theorem and some applications, Ph.D. Thesis, Central European University, Budapest, 
Hungary, 2017. 

13) X. P. Ding, perturbed proximal point algorithms for generalized quasi-variational inclusions, J. Math. 
Anal. Appl. 210 (1997), 88–101. 

14) Y. H. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Appl. Anal. 
38 (1990), 1–20. 

15) W. I. Fletcher, An Engineering Approach to Digital Design, Taiwan: Prentice-Hall, 1980. 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 43 Issue: 08-2024 
DOI: 10.5281/zenodo.13377957 

 

Aug 2024 | 272  

16) R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley Longman Publishing 
Co., 1992. 

17) Hassouni and A. Moudafi, A Perturbed algorithm for variational inclusions, J. Math. Anal. Appl. 185 
(1994), 706–712. 

18) Izuchukwu and Y. Shehu, Projection-type methods with alternating inertial steps for solving multi-
valued variational inequalities beyond monotonicity, J. Appl. Numer. Optim. 2 (2020), 249–277. 

19) E. Kreyszig, Advanced Engineering Mathematics, J. Wiley and Sons, Inc., New York, London, 1962. 

20) H. G. Li, A nonlinear inclusion problem involving (α, λ)-NODM set-valued mappings in ordered Hilbert 
space, Appl. Math. Lett. 25 (2012), 1384–1388. 

21) H. G. Li, X. B. Pan, Z. Y. Deng, and C. Y. Wang, Solving GNOVI frameworks involving (γG, λ)-weak-
GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl. 2014 (2014): 146. 

22) Moudafi and N. Lehdili, from progressive decoupling of linkages in variational inequalities to fixed-point 
problems, Appl. Set-valued Anal. Optim. 2 (2020), 159–173. 

23) L. V. Nguyen, Q. H. Ansari, and X. Qin, Weak sharpness and finite convergence for solutions of 
nonsmooth variational inequalities in Hilbert spaces, Appl. Math. Optim. 84 (2021), 807–828. 

24) X. Qin, L. Wang and J. C. Yao, Inertial splitting method for maximal monotone mappings, J. Nonlinear 
Convex Anal. 21 (2020), 2325–2333. 

25) D. R. Sahu, J. C. Yao, M. Verma, and K. K. Shukla, Convergence rate analysis of proximal gradient 
methods with applications to composite minimization problems, Optimization 70 (2021), 75–100. 

26) H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag: Berlin, Heidelberg, 
NewYork, 1974. 

27) E. Sinestrari, Hille-Yosida operators and Cauchy problems, Semigroup Forum 82 (2011), 10–34. 

28) E. Sinestrari, On the Hille-Yosida Operators, Dekker Lecture Notes, vol. 155, Dekker, New York, 1994, 
pp. 537–543. 

29) B. Tan, X. Qin, and J.C. Yao, Strong convergence of self-adaptive inertial algorithms for solving split 
variational inclusion problems with applications, J. Sci. Comput. 87 (2021): 20. 

30) K. Yosida, Functional Analysis, Grundlehren der mathematischen Wissenschaften, vol. 123, Springer-
Verlag, 1971. 

31) Imran Ali, Haider Abbas Rizvi, Ramakrishnan Geetha, and Yuanheng Wang, A Nonlinear System of 
Generalized Ordered XOR-Inclusion Problem in Hilbert Space with S-Iterative Algorithm, 
Mathematics,2023, 11, 1434 


