
Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 273

ADOPTION OF CONTINUOUS DELIVERY IN DEVOPS: FUTURE

CHALLENGES

MARIA AFZAL
Department of Software Engineering, Superior University, Lahore, Pakistan.
Email: maria.afzal202@gmail.com

USMAN HAMEED
Department of Computer Science, Superior University, Lahore, Pakistan.
Email: usman.hameed4477@gmail.com

SALEEM ZUBAIR AHMED
Department of Software Engineering, Superior University, Lahore, Pakistan.
Email: saleem.zubair@supeior.edu.pk

MUHAMMAD WASEEM IQBAL
Department of Software Engineering, Superior University, Lahore, Pakistan.
Email: waseem.iqbal@superior.edu.pk

SABA ARIF
Department of Computer Science, Superior University, Lahore, Pakistan.
Email: saba.arif@superior.edu.pk

USAMA HASEEB
Department of Software Engineering, Superior University, Lahore, Pakistan.
Email: mspm-s22-005@superior.edu.pk

Abstract

Product may be released more frequently and consistently with continuous delivery, requiring less-
Continuous delivery (CD), a crucial component of DevOps, will remain a significant challenge in future
manual work and give developers more assurance that the software is of high quality. Additionally, it
necessitates the use of more advanced configuration management and deployment technologies, as well
as a greater emphasis on automation. Additionally, continuous delivery necessitates a change in
company culture and philosophy, which some firms may find challenging to implement. Additionally,
organizations will need more advanced monitoring and logging systems to make sure the software is
functioning properly and that any problems can be found promptly because of the complexity and rapidity
of software development. Careful preparation and the application of the appropriate DevOps techniques
and tools can be used to overcome challenges. Investment in training and the acquisition of DevOps
specialists with continuous delivery experience can both be advantageous for organizations.

Keywords: Devops; Continuous Delivery; Adoption; Future Challenges.

1. INTRODUCTION

A crucial DevOps technology, continuous delivery helps developers to deploy code
more quickly and with fewer failures. It makes it possible for teams to create, test, and
deploy software fast and effectively. Teams can test new features fast and roll them out
to customers thanks to continuous delivery. Nevertheless, there are several difficulties
with continuous delivery in DevOps. The demand for automation is one of the most
difficult issues. Although automation is necessary for effective continuous delivery, it
can be challenging to set up and manage. The requirement for accurate testing and

mailto:mspm-s22-005@superior.edu.pk

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 274

monitoring presents another difficulty. It is challenging to guarantee that the code is of
great quality before it is delivered without trustworthy testing and monitoring [1]. A
DevOps technique called continuous delivery (CD) enables businesses to swiftly
release software updates to their clients. It entails automating the development, testing,
and deployment of programs to enable on-demand software release to production.
Although CD has completely changed how software is produced and distributed, it also
presents a unique set of difficulties. Addressing the complexities of software
deployments is the first difficulty. Various teams and services must be coordinated as
part of CD, which can be challenging to handle [2]. In addition, managing numerous
environments, like development, production, and staging, can make the software
release process complicated. Due to its intricacy, delivery times may be prolonged and
errors are more likely to occur. Making sure applications are safe and adhere to industry
standards is the second problem [3]. To guarantee that their apps are safe and
consistent with industry standards, CD mandates that businesses constantly review and
update them. As firms must be capable of swiftly discovering security flaws and fixing
them before they are exploited, this can be a challenging process. Scalability is the third
difficulty. Organizations must be able to expand their delivery method to satisfy client
expectations to implement CD. Implementing this can be challenging, particularly for
large firms with intricate systems. Finally, continuous integration is necessary for
continuous delivery [4]. To create, test, and deploy apps, several developers will need
to collaborate, which can be challenging to organize. Additionally, Delivery Pipeline is
thought of as the final link in the production chain for the program that gathers parts of
the finished product from various packages of potentially susceptible software build,
testing, and staging. The Delivery Pipeline is seen in Fig. 1 and begins with the Staging
step following Code Integration. The item will next be put to the test through an
automated test [5, 6]. The code will be made public once the artifact has successfully
undergone the Automated Test procedure to get user feedback.

Figure 1: Pipeline of delivery

A combination of skills called continuous delivery enables us to swiftly, safely, and
sustainably introduce new features, configuration changes, bug fixes, and experiments

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 275

into production or the hands of customers [7]. Continuous delivery is based on these
fundamental ideas:

Integrate quality. In continuous delivery, we invest in creating a culture that is supported
by technologies and people so that we can identify issues as soon as they arise and
repair them as soon as they are affordable to identify and fix.

Work in small chunks. When creating new services or products or making investments
in organizational change, organizations frequently plan their work in large chunks. We
get crucial feedback on the tasks we are doing so that we may make course corrections
by breaking work up into so much smaller pieces that provide measurable business
outcomes rapidly for a tiny portion of our target market [8]. Working in tiny batches adds
some overhead, but it has huge benefits since it helps us avoid tasks that have no
negative value for our businesses. Improving the finances of the software delivery
process so that the cost of pushing out individual updates is very low is one of the main
objectives of continuous delivery.

Computers perform repetitive tasks; people solve problems. Software deployments and
regression testing are two examples of repetitive tasks that require a lot of time and
effort that can be reduced by investing in automation and simplification. As a result, we
free up personnel for higher-value problem-solving tasks, such as responding to
criticism by redesigning our systems and procedures.

Relentlessly pursue continuous improvement. The most crucial quality of high-
performing organizations is that they're never content and constantly try to improve [9].
High performers incorporate improvement into every employee's everyday tasks.

Here are some ways that high-performing organizations achieve this:

1. Encouraging a culture of continuous improvement: High-performing organizations
foster a culture where everyone is encouraged to identify and act on opportunities
for improvement. This can involve creating forums for employees to share ideas
and feedback, as well as recognizing and rewarding employees who contribute to
continuous improvement.

2. Prioritizing quality: Quality is a key aspect of continuous delivery. High-performing
organizations prioritize quality by incorporating automated testing, code reviews,
and other quality assurance measures into their development processes. This
ensures that bugs and issues are caught early, reducing the risk of delays and
downtime.

3. Empowering teams: High-performing organizations allow their teams to take
proprietorship of their work and make decisions that impact the product. This
includes providing teams with the tools, resources, and training they need to be
successful. Empowered teams are more likely to take responsibility for delivering
high-quality code and identifying opportunities for improvement.

4. Providing regular feedback: Continuous delivery relies on frequent feedback to
identify and address issues quickly. High-performing organizations provide regular

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 276

feedback to their teams, including metrics and performance data. This allows
teams to monitor their progress and identify areas where they can improve.

5. Embracing experimentation: High-performing organizations are willing to
experiment with new ideas and approaches. This can involve running small-scale
experiments to test new features or changes, or conducting A/B testing to compare
the effectiveness of different strategies. By embracing experimentation,
organizations can quickly identify what works and what doesn't, and make
changes accordingly.

Overall, high-performing organizations that use continuous delivery incorporate
improvement into every employee's everyday tasks by fostering a culture of continuous
improvement, prioritizing quality, empowering teams, providing regular feedback, and
embracing experimentation.

Everyone is responsible. Teams in bureaucratic companies frequently prioritize
departmental goals over organizational objectives. Development thus emphasizes
throughput, testing emphasizes quality, and operations emphasize stability [10]. These
are all system-level objectives, though, and they can only be accomplished through tight
cooperation amongst all parties who are involved in the delivery process. Making these
system-level results transparent, engaging with the rest of the company to set
quantifiable, doable, and time-bound goals for these results, and then assisting their
teams in achieving those goals are essential management objectives.

According to our research, changes in CD had a positive impact on how rewarding work
felt [11, 7]. This indicates that investing in technology also involves investing in people
and that doing so will increase the sustainability of our technological process (figure 2).

Figure 2: Work becomes more sustainable through continuous delivery

2. LITERATURE REVIEW

A summary of the extant literature is provided in this section. The difficulties that an IT
organization has implementing DevOps principles have been extensively studied. We
discovered that the organization's issues with adopting CD are plugins and CI.
Additionally, they noted that firms may have difficulties in acquiring the necessary
knowledge and abilities to embrace DevOps principles. The implementation of
continuous delivery is hampered by bad infrastructure, manual testing, and resistance to

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 277

change; it has been found [12]. Because of tool restrictions, continuous delivery is
halted. The adoption of current tools raises security issues, and they also provide an
insufficient testing response.

Continuous delivery is one of the DevOps techniques that must be used, which
necessitates changes in corporate culture, roles, and responsibilities surrounding the
delivery process. It might be difficult to develop appropriate procedures for various
firms; thus, interviews should be done to identify the advantages and difficulties. Many
writers conducted an SLR and discovered that the main obstacles to adopting
continuous delivery under DevOps principles are the design phase, testing, and
integration tools [13]. They propose that when firms transition to DevOps and CD, they
must alter their strategy. Another study found that moving forward into continuous
delivery while dealing with complicated infrastructure might be quite difficult. A semi-
structured technique was used by some authors to identify security threats to a
continuous delivery pipeline. They draw attention to the danger posed by the internet by
snatching or hacking data from the CD pipeline [14]. To meet this difficulty, they offered
container solutions like Docker. On rapid delivery and software testing, several writers
conducted a case study and semi-systematic review of the literature. They claimed that
poor test coverage performance, time restrictions, and customer satisfaction are
obstacles to testing and CD. The majority of developers, according to a survey
conducted by the author, are unaware of important industry threats that the continuous
delivery pipeline mandates in development [15]. Continuous delivery is complicated by a
large number of infrastructure systems and quantities of resources. In this article, the
author discusses the value of collaboration and communication between the
development and operations teams when it comes to software quality assurance. He
said that DevOps offers the best testing and delivery options. When doing testing,
DevOps concepts and features use different methods than those used for ordinary
testing. Delivery is not late because of the prioritization of tests and the usage of
analytics [16]. Organizations may overcome the difficulty of adopting DevOps with the
aid of testing groups. Testing teams can set up an environment for continuous testing to
support automated deployment, delivery, and monitoring. This facilitates immediate
input on the software's quality. In agile, continuous testing is carried out in the early
phases, while in DevOps, testing is a continual activity. It provides teams with precise
and lucid test results. More systematic research in the academic, scientific literature is
needed to support DevOps testing efforts [17]. DevOps presents several ways to view
testing. A close link between the development and operations teams may be formed
through DevOps. Numerous test method DevOps organization approaches have been
discussed by the author, including feature toggles, infrastructural testing, removing,
aggressive testing, etc.

Feature toggles, also known as feature flags or feature switches, are a technique used
in software development to turn on or off specific features or functionality in an
application. Feature toggles can be used in conjunction with continuous delivery to allow
for the continuous deployment of code to production while also controlling which
features are visible to end users [18].

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 278

Here are some ways that feature toggles can be used in continuous delivery:

1. Gradual rollout: Feature toggles can be used to gradually roll out new features to a
subset of users, allowing for testing and monitoring of the feature before releasing
it to all users.

2. A/B testing: Feature toggles can also be used for A/B testing, where two or more
versions of a feature are released to different user groups to determine which
version performs better.

3. Canary releases: Feature toggles can be used for canary releases, where a new
version of an application is released to a small group of users to ensure that it is
stable before rolling it out to all users.

4. Emergency rollbacks: In the event of a problem with a new feature or release,
feature toggles can be used to quickly disable the feature or roll back to a previous
version of the application.

Overall, feature toggles provide flexibility and control in continuous delivery by allowing
developers to release new features to production gradually and monitor their impact
before releasing them to all users.

Infrastructural testing is an essential part of continuous delivery (CD) because it ensures
that the system infrastructure is functioning correctly before the new code is deployed
[19]. In CD, the software development process is automated, and changes to the code
are frequently released to production [20]. The goal of infrastructural testing is to detect
any potential issues in the infrastructure that could cause problems for the application
once it is deployed.

Some common types of infrastructural testing in CD include:

1. Configuration testing: This involves testing the configuration of the infrastructure,
including hardware, software, and network settings, to ensure that it is correctly set
up to support the application.

2. Integration testing: This involves testing the interaction between different
components of the infrastructure, such as databases, servers, and applications, to
ensure that they are working together correctly.

3. Performance testing: This involves testing the performance of the infrastructure
under different levels of load and stress, to ensure that it can handle the expected
traffic levels and workloads.

4. Security testing: This involves testing the security of the infrastructure to identify
potential vulnerabilities that could be exploited by attackers.

In addition to these types of testing, it is also essential to monitor the infrastructure
continuously to identify any issues that arise after the application is deployed [21]. This
can include monitoring server logs, application logs, and other metrics to detect any
anomalies or errors that could impact the performance or security of the application.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 279

Overall, infrastructural testing is critical for ensuring the reliability, performance, and
security of the infrastructure that supports continuous delivery. By detecting and
resolving issues early in the development process, teams can improve the quality of
their applications and reduce the risk of downtime or other issues in production.

Removing: In Continuous Delivery, removing refers to the process of deleting or
disabling a feature, component, or code from a software application or system.

Removing is an important part of Continuous Delivery because it helps ensure that the
software application or system is always in a releasable state [20]. By removing any
unnecessary or outdated features, components, or code, the development team can
reduce the risk of introducing new bugs or other issues into the system.

To implement removing as part of Continuous Delivery, the development team should
have a clearly defined process in place for removing code or features. This process
should include proper testing to ensure that the removal does not adversely impact the
application or system [22]. Additionally, the team should have a plan for a rollback in
case any issues are discovered after the removal is completed.

Overall, removing in Continuous Delivery is an important practice that helps ensure that
the software application or system is always up-to-date, secure, and reliable.

Aggressive testing is a crucial aspect of ensuring that high-quality software is delivered
to customers quickly and reliably [23]. Aggressive testing involves a comprehensive
testing strategy that covers all aspects of the software development process, including
unit testing, integration testing, performance testing, security testing, and more.

The goal of aggressive testing is to catch bugs and other issues as early as possible in
the development process [24]. By identifying and fixing problems early, teams can avoid
costly delays and reduce the risk of introducing bugs into production environments.

To implement aggressive testing in Continuous Delivery, it is important to automate
testing wherever possible [25]. This can involve using tools such as automated testing
frameworks and continuous integration systems to run tests automatically every time
new code is committed. Additionally, teams can use monitoring and logging tools to
keep track of issues that arise in production environments and quickly resolve them.

Overall, aggressive testing is a key component of successful Continuous Delivery
practices, and teams should aim to integrate testing into every stage of the development
process. By doing so, they can ensure that they are delivering high-quality software that
meets customer needs and expectations.

The author says that company development and operations teams might choose these
techniques based on their requirements. In DevOps, testing in production provides the
development team with constant input or response.

The author lists A/B testing, beta testing, and being able to monitor as testing for
production testing as basically three techniques. Real-time monitoring of the production
environment and prompt handling of anomalies are both benefits of DevOps. We
explain how testing tools used in a DevOps approach aid in the development of efficient

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 280

test creation techniques [26, 13]. Finding precise tools for continuous practice activities
presents issues for DevOps professionals. Additionally, they struggle to choose the right
testing instrument, which wastes time and effort. According to Fredrickson,
communication difficulties rather than technological difficulties constitute a key obstacle
[27]. DevOps includes testing as a key component. Processes for testing services like
development-driven testing, unit testing, and behavioral testing in DevOps are used by
many enterprises. Code is sent straight to the test pipeline for additional quality
improvement. DevOps should incorporate testing from the very start of the software
development process [27, 16]. The project's quality is impacted by testing towards the
end. Without first testing the project, continuous delivery might also be stopped. To
improve performance during DevOps' continuous testing, the author recognized the
need of choosing the appropriate tools and technologies. During testing, the tools
immediately identify the issue, saving time and effort. We do a case study regarding the
introduction of DevOps in a firm in New Zealand. The performance of the tester is
improved, according to the writers, by learning new technologies and tools [28]. They
observed that cooperation between the testing and development teams boosts output.
The adoption of DevOps also reduces knowledge gaps and improves code quality [29].
A study, interviews, and a workshop with IT specialists were all part of the multi-
perspective research strategy we used. They listed several competencies for productive
DevOps teams [30]. During testing, automation was prioritized. Writing and executing
test cases manually requires more time to locate and address the primary cause of an
issue in testing, therefore knowledge of automation is crucial. The author explained how
testing teams may get through obstacles in the way of a DevOps transformation [31].
They may set up a framework for continuous testing and receive a prompt
response from the software development team. A quick release and greater test
coverage are made possible by the continuous automation framework and coordination
between development and operation. Both test environment performance and
management testing as a code are topics of blogs. However, there isn't a lot of
information on metrics that assist teams in enhancing their testing job. DevOps testing
impacts/covers all services from development to deployment. Performance and security
testing are encouraged by DevOps [32]. Monitoring, according to the author, might be
useful in testing to acquire quick responses on technical services [33]. DevOps testing
was developed to address the problems of agile development. DevOps testing
enhances communication between all stakeholders and refines quality. However, there
isn't a lot of systematic study on DevOps test results in scientific or academic journals,
including case studies. Reliability and rapid deployment are made possible by solid and
reliable architecture. It helps in obtaining prompt input from the operation and
development teams [34]. The research on DevOps effects on software architecture is
sparse, nevertheless. The goal of DevOps methods is to achieve high quality by
expediting the implementation of change in the production environment. These
procedures eliminate the structural barriers to transformation. Many software experts
stated that monolithic architecture, in particular, does not applicable to DevOps and CD
[28]. They claimed that DevOps is incompatible with highly coupled architecture.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 281

By discussing with software companies, the writers discovered several problems. They
discovered that the adoption of DevOps might be impacted by legacy or outdated
architecture. Due to integration issues in these outdated infrastructures, data collecting
from various tools might be challenging [31, 29]. We analyzed the IT staff as a case
study. They said that reference design simplifies the organization of employees and
business-related problems in a DevOps setting [32, 27]. They found that cooperation
between the development and operations teams reduced operational effort by 50%.
DevOps also decreases faults by 3% while adding new modules to the production
pipeline. The author claimed that teams are motivated to create new apps rather than
concentrate on defect remediation when there are fewer faults. To determine which
strategies may be useful for continuous infrastructure and DevOps, we carried out a
methodical mapping research. Continuous code reworking in distributed software
applications, according to them, slows down the testing and deployment process [33,
25]. The majority of businesses are switching to DevOps because of its quick feedback
and delivery capabilities. There have been some DevOps transformation study studies.
However not in the areas of architecture influenced by the shift to DevOps and
continuous testing. The influence of architecture on production settings concerning
Continuous Delivery (CD) and Continuous Testing (CT) is the subject of very little
research [34, 39]. Additionally, few studies explain continuous delivery and testing in the
DevOps context. The authors highlight the advantages and difficulties of embracing
DevOps as well as the difficulties DevOps teams have when it comes to continuous
testing []. However, it did not offer a solution to issues like adoption issues for
continuous delivery or how architecture affects environments in DevOps.

H1- Continuous delivery (CD) is a DevOps practice that enables organizations to quickly
deliver software changes to their customers.

H2- Work in small chunks for quick outcomes in the market.

H3- Continuous delivery allows developers to deploy code faster and with fewer errors.
It enables teams to quickly and efficiently develop, test, and deploy applications.

H4- It ensures the software is running smoothly and issues are identified and
addressed.

3. METHODOLOGY

We will motivate our work by argument and framework, and how we can overcome
barriers and challenges through continuous delivery that we are facing in other software
models. In this article, we describe the continuous delivery problems that are lack of
automation, security, infrastructure, monitoring, and integration. Now here we are going
to work on the lack of automation in continuous delivery [41].

Problems

1. Lack of Automation: Automation is a key part of any successful Continuous
Delivery process. Without proper automation, manual processes will add extra
time, effort, and cost to the process.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 282

2. Security: Security is often overlooked when implementing Continuous Delivery, but
it’s a critical factor. Security issues can create problems throughout the entire
process, from source control to deployment.

3. Infrastructure: Implementing Continuous Delivery requires a reliable, secure, and
scalable infrastructure. Without this, your deployments will be unreliable and prone
to failure.

4. Monitoring: Continuous Delivery requires detailed monitoring of your systems to
ensure that everything is running smoothly. Without this, you won’t be able to
recognize and address any problems that arise.

5. Integration: Continuous Delivery requires the integration of multiple tools and
processes. This can be difficult to implement, and if done incorrectly, can lead to
issues with the process.

Challenges and Barriers

1. Lack of Automation: Automating the entire DevOps process can be a challenge.
Without automation, manual steps can add delays, introduce errors, and increase
overall costs.

2. Security: Security is a major challenge for continuous delivery. As code moves
quickly from development to production, it is important to ensure secure code and
configurations are deployed.

3. Testing: Testing is a critical part of the continuous delivery process. Without proper
testing, bugs and other issues can be introduced into production.

4. Integration: Continuous delivery requires the integration of multiple tools and
processes. This can be a challenge, as teams must build and maintain reliable
integrations between their tools.

5. Infrastructure: Infrastructure is an important part of the continuous delivery
process. Teams must ensure their infrastructure is reliable, scalable, and secure.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 283

Table 1: Way to Mitigate Continuous Delivery Challenges

To investigate how automation affects skills and cooperation, we studied 10 app
development teams within the setting of a big European IT services organization (more
than 100 000 people) with 14000 IT staff. This business has been around for a while
[34]. The organization is hierarchically structured with seven layers, and its highly
bureaucratic culture is in opposition to its adaptability [16, 18]. The development and
exploitation departments make up the Information Systems Division's two divisions. This
organization was one of the first to adopt the DevOps methodology; staff has been
utilizing agile methodologies for more than 14 years and DevOps for 7 years.

Five job responsibilities are examined as the units of analysis for the 11 teams, which
are all immersed in a company with certain comparable conditions (all adopt agile
management approaches) [35, 17]. However, because these teams employ various
forms of rapid engineering, their test automation levels and infrastructure vary. We
believe that when they transition to DevOps, automation will have an impact on the
potential need for human skills and cooperation patterns.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 284

It must be observed that there is not necessarily consensus on what constitutes a large
project in terms of team size [36]. The number of development teams, workers, lines of
code, and project time are some of the recommended metrics [37]. There is no
consensus, even when the measure refers to the number of developers. More than 20
developers, according to authors while 50–100 developers, according to authors
constitute a sizeable project [38]. In our scenario, the management responsible
mentioned that the variations resulting from largeness become obvious when teams
have more than 12 to 15 people. As a result, we settled on 14 as the study's cutoff
point. Projects that are contracted require more soft skills (such as communication),
which are related to contracting.

We recognize three stages of automation:

1. Automation Level 1 Agile (Aut.1): Agile may be viewed as automation level 1 in the
shift to DevOps compared to the conventional V-model since it allows for more regular
updates as development becomes more flexible. Dev and Ops continue to operate in
isolation with no collaboration or release automation; therefore DevOps is not fully
achieved.

2. Automation Level 2 Continuous Integration (Aut.2): The Operation function must
be in line with the Development function and both must start carrying out various tests
[39, 23] that are coordinated with code development and are also automated to the
greatest extent feasible.

3. Automation Level 3 Continuous delivery (Aut.3): which involves co-designing,
performing, and ideally automating integration tests with other modules, end-to-end
testing, performance tests, and user acceptance tests by Operation working with the
Development function [40, 24]. The more automation there is, the more exchange and
talk about monitoring there has to be so that the appropriate indicators may be
appropriately built to track the activity of software development.

We were able to investigate 11 different sorts of teams in all feasible configurations. We
were able to investigate the impact of the amount of automation while noticing a variety
of groups in terms of the other two criteria thanks to the equal division of groups for
each of the criteria.

These main collaborations are listed in Table 2 by role or profession; for instance, four
out of the eleven RM indicated the developer as a primary collaborator. In line with
expectations, the DPM reported the most instances of cross-functional cooperation
among the four other jobs. The crucial function of the PO is a further noteworthy insight.

Table 2 shows the primary partnerships between Dev and Ops in more detail. We
emphasize partnerships between RM and PO, AR and workers, or DPM with PE and
workers from the development perspective. From the perspective of operations, we
observe close cooperation between developers and PE, RM, and PO, as well as with
creators.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 285

Table 2: Main Collaboration

Furthermore, every responder has emphasized how better coworker cooperation is in
an agile environment. This conclusion could be explained in part by the usage of
collaboration tools, daily meetings, or sprint reviews. The organization of these regular
encounters will formally schedule the interactions. However, many meetings may be
viewed as an excessive workload. We also discuss the various collaboration styles and
actor types that are engaged for each job.

Release Manager (RM): The RM serves as the focal point for many company-wide
partnerships, particularly those with the manufacturing staff. RMs emphasized their
connections with the project manager, which happened typically once a week. This
cooperation is ongoing and essential to the success of initiatives to give particular tasks
top priority. For instance, an RM clarified (Aut.3): "We set up a location dubbed the
"Common Work Plan of Exploitability" where we communicate once a week. We review
all actions and ongoing projects to determine what needs to be prioritized in the case of
new activities ". These partnerships frequently act as real catalysts for generating a
dynamic among all teams engaged in the same project. Nearly all RMs also mentioned
working with production engineers (see Table 2). They converse frequently (RM Aut.2):
"Before seeing the project manager, we have a conversation about a few things. One

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 286

visits the other for assistance with even the smallest issue, and vice versa." It should be
highlighted that in this situation, the organization of project group meetings gave RMs,
developers, and operators the chance to come together. The degree of automation in
the shift from agile to DevOps may have an impact on how frequently these
partnerships occur. In reality "Behind the project manager are the developers for me.
However, this changes within the most sophisticated initiatives using the DevOps
methodology" (RM Aut.3). When a result, additional interactions with developers may
come organically as agile and DevOps approaches and concepts are applied at a
higher application level.

Product Owner (PO): The majority of POs reported working with developers and DPM,
as was to be expected. Some of these engagements are necessary for the
demonstrations' sprint validation. The frequency and caliber of these interactions
directly depend on the degree of automation in the shift from agile to DevOps. To feel
like a member of an embedded staff, a PO recommended the following (Aut.3): "Today
we are truly an embedded staff with marketing, developers." When numerous POs are a
part of the same team, they communicate with one another every day by phone or email
and during the weekly "sales meeting." In addition, there will be a discussion between
the line managers and product managers during this meeting. Additionally, a few POs
recalled having several conversations with functional architects. Most of the POs also
described working with corporate sponsors or users, however, these relationships were
not thought to be key ones, in keeping with the diverse functions inherent to PO duties.
It should be noted that numerous POs emphasized the sparse collaborative contacts
with supervisor-operators (Aut. 2): "Those with whom I communicate the least, are
exploiting"; "I have difficulty expressing myself on this topic, they (supervisor-operators)
are more associated to developers."

Architect (AR): The three primary teammates named by the architects
were DPMs, POs, and developers, similar to earlier studies (see Table 2). The majority
of architects reported speaking with DPMs to exchange knowledge and opinions about
a project. Information-sharing partnerships with the development team was also
highlighted, particularly during sprint evaluations and demos. This was emphasized by
an architect (Aut.3): "we have to be specific on how to operate, and if practicable, build
a better, more thorough partnership with the technical manager." These discussions
frequently take occur. To establish norms, standards, and best practices, some
architects proposed sharing information with the RM profession (Art. 2): "he (RM) is
supposed to give over, to examine the technical architectural file." An AR (Aut.3)
underlined how the switch to DevOps affected his job and his ability to collaborate: "It is
a method that enables a deeper understanding of each participant's position in the
project. In the end, everyone is still responsible, but problems with architecture will no
longer exist since decision-making will be more evenly distributed."

Production engineer (PE): The principal partnerships mentioned by PEs are those
with DPMs, POs, and developers (see Table 2). Therefore, the majority of PEs concur
that there is strong reciprocal interaction with developers (Aut. 2 and 3). We

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 287

communicate with one another naturally, and as developers join our team, we are
evolving into the DevOps team.

Additionally, the DPMs must submit applications to PEs as part of their daily tasks,
resulting in extensive collaboration with shared duties. However, there have been some
reported issues with cooperation, as one PE noted: "I was the person who stated what I
anticipated in terms of paperwork, albeit it is their duty." PEs also talked about their
partnerships with RMs. The frequency of this cooperation might, however, differ
significantly amongst teams. Collaborations do occur frequently when the RM is fully
committed to the team. According to a PE's description of this partnership (Art. 2), "In
our organization, the function of RM was formed since administrative support for our
project is important; it helps to lighten our work." To ensure that we do not overlook
anything, the RM's job is to anticipate complicated processes. The jobs of RM and DPM
no longer be available in a DevOps team, according to a PE (Aut.3). The Scrum Master
handles the role of DPM at the DevOps team level, while the team as a whole is
responsible for project management at the planning level. Additionally, production
engineers, operators, technical experts, and PO all perform the duty of the RM.

Department and Project Managers (DPM): DPMs are at the heart of several
partnerships, both inside and outside of teams. The manager profile works with several
performers (see Table 2). The majority also acknowledged working together with other
DPMs and POs, particularly to talk about budget, tracking, and item prioritizing. Several
Managers also mentioned having a tight working connection with operational architects
(Aut.2): "I work early with our operational architects to identify and schedule future
development." Furthermore, despite not being a functional expert, the DPM accepts the
result's conformance.

In conclusion, it is evident that the key collaborators' collaboration scope has altered
and is more evenly distributed. The perceived higher depth of collaboration is a
reflection of improved member comprehension. When groups are in automation 3, this
more extensive richness seems to stand out more. As a result, taking into account our
research on cooperation and skill sets, we can divide the agile to DevOps
transformation into the following three stages. The limited range of collaborations at
automation level 1 may be described by the DevOps concept itself, which expands
collaboration among Dev and Ops while restricting it within Dev. COM (Communication)
skills are crucial, and RES (Responsibility) skills are highly developed as IPS
(Interpersonal Skills), as agile techniques need them. Unexpectedly, FLX (Flexibility
Skills) and TWK are less common in their discourses. Thus, collaboration extends
farther at automation level 2 than it does at automation level 1. Except for RES, all SSk
(Soft Skills) are more prevalent at this level. The degree of collaboration is comparable
to automation level 2 or may even significantly decline at automation level 3. This
conclusion is explained by the fact that teams at automation level 3 are more aware of
which stakeholders to limit or stop working with to increase efficiency. Except for RES,
SSk rise relative to Aut.2 and this is especially true for FLX, TWK, and IPS.

DevOps with Continuous: Delivery DevOps with continuous delivery is a methodology
that combines software development, operations, and quality assurance processes to

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 288

enable the continuous delivery of software applications. It emphasizes automation,
collaboration, and communication between development and operations teams to
ensure that applications are released in a timely, reliable, and repeatable manner. This
approach enables teams to quickly and easily deploy new versions of their applications,
while also reducing the risk of errors or downtime. DevOps without Continuous: Delivery
DevOps without continuous delivery is a methodology that combines software
development and operations processes but does not emphasize automation or
collaboration between development and operations teams. This approach requires
manual processes and lacks the automation, feedback loops, and feedback cycles that
are essential for effective DevOps. As a result, it is more prone to errors, delays, and
downtime. Additionally, it does not support the rapid and reliable deployment of
applications, making it a less efficient and less reliable option for software development.

Table 3: Software with and without Continuous delivery

4. DISCUSSION

Table 4 provides a summary of our key conclusions and empirical contributions. We talk
about these results and create theoretical explanations. We examine the consequences
of identifying several phases in the agile to DevOps transition and how doing so may
result in the creation of a DevOps maturity model. Finally, we suggest looking at how
our findings relate to intelligence.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 289

Table 4: Findings and empirical contributions

5. CONCLUSION

This study examined the degree to which the move toward DevOps represents
increased intelligence. The move from Agile to DevOps may be broken down into three
stages: Agile (Aut. 1), Continuous Integration (Aut. 2), and Continuous Delivery (Aut.3).
We looked at the significance of cooperation styles and skill sets in the development of
DevOps.

We discovered a fundamental interruption in the cooperation patterns inside teams as
well as the soft skills that software companies are required to possess. At automation
level 3, we saw that the primary contributors' collaboration scope had obviously
changed and was now more evenly distributed across Dev and Ops. Richer cooperation
reflecting improved member understanding is how we explained this outcome.
Additionally, we discussed three stages that are distinguished by increased
collaboration in conjunction with an increase in automation as well as a change in how
each stage's talents are evaluated. At automation level 1, we demonstrated the
significance of duties and communication skills, which was predicted given that Agile
Methodologies encourage and promote these abilities then, at the following level, we
discovered an expansion of these partnerships except for knowledge associated with
duties. Even at automation level 3, they were falling off. We showed how DevOps
encouraged automation, enhanced flexibility, and created observable outcomes like
quicker and better delivery. According to Alter's notion of smartness, DevOps may
therefore result in increased smartness for the Information System function.

FUTURE WORK

The future of Continuous Delivery in DevOps will include the further automation of the
software development and deployment pipelines. This will enable faster and more
frequent releases, reducing the manual work needed to deploy applications and
services. Additionally, the use of DevOps practices such as Infrastructure-as-Code will
allow for more consistent and repeatable deployments. To improve the workflow and

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 290

efficiency of Continuous Delivery, DevOps teams will need to focus on creating more
flexible and automated testing strategies and processes. Additionally, the adoption of
artificial intelligence and machine learning tools to automate processes and improve the
accuracy of deployments will become increasingly important. Finally, there will be an
increased focus on security and compliance to ensure the safety and integrity of the
applications and services being deployed.

References

1. R. K. Gupta, M. Venkatachalapathy, and F. K. Jeberla, “Challenges in Adopting Continuous Delivery
and DevOps in a Globally Distributed Product Team: A Case Study of a Healthcare Organization,” in
2019 ACM/IEEE 14th International Conference on Global Software Engineering (ICGSE), Montreal,
QC, Canada, May 2019, pp. 30–34. doi: 10.1109/ICGSE.2019.00020.

2. M. Gokarna and R. Singh, “DevOps: A Historical Review and Future Works,” in 2021 International
Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India,
Feb. 2021, pp. 366–371. doi: 10.1109/ICCCIS51004.2021.9397235.

3. M. Z. Toh, S. Sahibuddin, and M. N. Mahrin, “Adoption Issues in DevOps from the Perspective of
Continuous Delivery Pipeline,” in Proceedings of the 2019 8th International Conference on Software
and Computer Applications, Penang Malaysia, Feb. 2019, pp. 173–177. doi:
10.1145/3316615.3316619.

4. M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu, “Beyond Continuous Delivery: An Empirical
Investigation of Continuous Deployment Challenges,” in 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), Toronto, ON, Nov. 2017, pp. 111–120.
doi: 10.1109/ESEM.2017.18.

5. R. Singh, “DevOPS Now and Then,” other, preprint, Nov. 2020. doi:
10.20944/preprints202011.0410.v1.

6. K. Beck, “Praise for Continuous Delivery”.

7. K. Beck, “Accelerate_ The Science of DevOps”.

8. L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A Survey of DevOps Concepts and
Challenges,” ACM Comput. Surv., vol. 52, no. 6, pp. 1–35, Nov. 2020, doi: 10.1145/3359981.

9. F. Erich, Chintan Amrit, and M. Daneva, “Report: DevOps Literature Review,” 2014, doi:
10.13140/2.1.5125.1201.

10. A. Mishra and Z. Otaiwi, “DevOps and software quality: A systematic mapping,” Comput. Sci. Rev.,
vol. 38, p. 100308, Nov. 2020, doi: 10.1016/j.cosrev.2020.100308.

11. M. Shahin, M. Ali Babar, and L. Zhu, “Continuous Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and Practices,” IEEE Access, vol. 5, pp. 3909–3943,
2017, doi: 10.1109/ACCESS.2017.2685629.

12. S. Zaib and P. K. Lakshmisetty, “A systematical literature review and industrial survey in addressing
the possible impacts with the continuous testing and delivery during DevOps transformation”.

13. D. H. Salameh, “The Impact of DevOps Automation, Controls, and Visibility Practices on Software
Continuous Deployment and Delivery”.

14. Wong, S., von Hellens, L., & Orr, J. (2006). Non-technical skills and personal attributes: the Soft Skills
Matter Most. In Proceedings of the 6th Australiasian Women in Computing Workshop (pp. 27-33).

15. Yin, R. K. (1994). Discovering the future of the case study. Method in evaluation research. Evaluation
practice, 15(3), 283-290.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 291

16. Strode, D. E. (2016). A dependency taxonomy for agile software development projects. Information
Systems Frontiers, 18(1), 23-46.

17. Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering, 14, 131-164.

18. Strode, D. E., Huff, S. L., & Tretiakov, A. (2009, January). The impact of organizational culture on
agile method use. In 2009 42nd Hawaii International Conference on System Sciences (pp. 1-9).
IEEE.

19. Rolland, K., Dingsoyr, T., Fitzgerald, B., & Stol, K. J. (2016). Problematizing agile in the large:
alternative assumptions for large-scale agile development. In 39th International Conference on
Information Systems (pp. 1-21). Association for Information Systems (AIS).

20. Dingsøyr, T., Fægri, T. E., & Itkonen, J. (2014). What is large in large-scale? A taxonomy of scale for
agile software development. In Product-Focused Software Process Improvement: 15th International
Conference, PROFES 2014, Helsinki, Finland, December 10-12, 2014. Proceedings 15 (pp. 273-
276). Springer International Publishing.

21. Hannay, J. E., & Benestad, H. C. (2010, September). Perceived productivity threats in large agile
development projects. In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (pp. 1-10).

22. Elshamy, A., & Elssamadisy, A. (2007). Applying agile to large projects: new agile software
development practices for large projects. In Agile Processes in Software Engineering and Extreme
Programming: 8th International Conference, XP 2007, Como, Italy, June 18-22, 2007. Proceedings
8 (pp. 46-53). Springer Berlin Heidelberg.

23. Ståhl, D., & Bosch, J. (2014). Modeling continuous integration practice differences in industry
software development. Journal of Systems and Software, 87, 48-59.

24. Chen, L. (2017). Continuous delivery: overcoming adoption challenges. Journal of Systems and
Software, 128, 72-86.

25. Gren, L., Knauss, A., & Stettina, C. J. (2018). Non-technical individual skills are weakly connected to
the maturity of agile practices. Information and Software Technology, 99, 11-20.

26. Vivian, R., Tarmazdi, H., Falkner, K., Falkner, N., & Szabo, C. (2015, May). The development of a
dashboard tool for visualising online teamwork discussions. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering (Vol. 2, pp. 380-388). IEEE.

27. Wiedemann, A. M., & Schulz, T. (2017). Key capabilities of DevOps teams and their influence on
software process innovation: a resource-based view.

28. Erich, F. M., Amrit, C., & Daneva, M. (2017). A qualitative study of DevOps usage in practice. Journal
of software: Evolution and Process, 29(6), e1885.

29. Ambler, S. W., & Lines, M. (2012). Disciplined agile delivery: A practitioner's guide to agile software
delivery in the enterprise. IBM press.

30. Ghazi, A. N., Petersen, K., Reddy, S. S. V. R., & Nekkanti, H. (2018). Survey research in software
engineering: Problems and mitigation strategies. IEEE Access, 7, 24703-24718.

31. Fitzgerald, B., & Stol, K. J. (2017). Continuous software engineering: A roadmap and agenda. Journal
of Systems and Software, 123, 176-189.

32. Pietrantuono, R., Bertolino, A., De Angelis, G., Miranda, B., & Russo, S. (2019, May). Towards
continuous software reliability testing in DevOps. In 2019 IEEE/ACM 14th International Workshop on
Automation of Software Test (AST) (pp. 21-27). IEEE.

33. Laukkanen, E., Itkonen, J., & Lassenius, C. (2017). Problems, causes and solutions when adopting
continuous delivery—A systematic literature review. Information and Software Technology, 82, 55-79.

Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)

ISSN: 1671-5497
E-Publication: Online Open Access
Vol: 42 Issue: 04-2023
DOI 10.17605/OSF.IO/6NYPX

April 2023 | 292

34. Alter, S. (2019). Making sense of smart living, working, and organizing enhanced by supposedly
smart objects and systems. In Smart Working, Living and Organising: IFIP WG 8.6 International
Conference on Transfer and Diffusion of IT, TDIT 2018, Portsmouth, UK, June 25, 2018,
Proceedings (pp. 247-260). Springer International Publishing.

35. Krey, M., Kabbout, A., Osmani, L., & Saliji, A. (2022). Devops adoption: challenges & barriers. In 55th
Hawaii International Conference on System Sciences (HICSS), virtual, 3-7 January 2022 (pp. 7297-
7309). University of Hawai'i at Manoa.

36. Khan, M. S., Khan, A. W., Khan, F., Khan, M. A., & Whangbo, T. K. (2022). Critical challenges to
adopt DevOps culture in software organizations: a systematic review. IEEE Access, 10, 14339-
14349.

37. Hamunen, J. (2016). Challenges in adopting a Devops approach to software development and
operations.

38. Silva, M. A., Faustino, J. P., Pereira, R., & Mira da Silva, M. (2018). Productivity gains of DevOps
adoption in an IT team: a case study.

39. Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö, T. (2016). DevOps
adoption benefits and challenges in practice: A case study. In Product-Focused Software Process
Improvement: 17th International Conference, PROFES 2016, Trondheim, Norway, November 22-24,
2016, Proceedings 17 (pp. 590-597). Springer International Publishing.

40. Cois, C. A., Yankel, J., & Connell, A. (2014, October). Modern DevOps: Optimizing software
development through effective system interactions. In 2014 IEEE international professional
communication conference (IPCC) (pp. 1-7). IEEE.

41. H. Hira, Khan, M. Afzal, S. Zubair, M. Atif, and K. Hamid, “DEVOPS METHODOLOGY IMPACT ON
SOFTWARE PROJECTS TO LEAD SUCCESSES AND FAILURE THROUGH KUBERNETES
MUHAMMAD WASEEM IQBAL,” Jilin Daxue Xuebao GongxuebanJournal Jilin Univ. Eng. Technol.
Ed., vol. 41, p. 11, Mar. 2023, doi: 10.17605/OSF.IO/D8YPH

