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Abstract 

The study investigates the onset of convection in a Maxwell nanofluid layer confined between two parallel 
plates. This investigation takes into account thermophoretic and Brownian diffusion and assumes no 
nanoparticle flux at the boundaries. The analysis involves two main approaches. Linear stability analysis, 
under which the Galerkin-type weighted residual technique, is employed to discuss the occurrence of both 
stationary and oscillatory convection for various parameters. Weakly nonlinear stability analysis, under 
which the truncated Fourier series is utilized. Heat and mass transfer are examined for both steady and 
unsteady states, with a focus on assessing Nusselt numbers for heat transfer and concentration Nusselt 
numbers for mass transfer. The results of the analysis are visualized through various graphical 
representations, including the streamline distribution, isotherm distribution, and isonano concentration 
distribution. 

Keywords: Brownian Motion, Linear and Non-Linear Instability, Maxwell Nanofluid, No Flux of 
Nanoparticles at The Boundaries, Heat and Mass Transfer, Galerkin-Type Weighted Residual Approach. 
Thermophoresis. 

 
1. INTRODUCTION  

In 1992, Choi and his research team embarked on a mission to address the technical 
challenges stemming from rising heat burdens, intensified heat flows, and amplified 
pressure differentials within diverse sectors. They were looking for an economically viable 
fluid solution with the highest possible thermal conductivity, achieved with minimal volume 
concentrations, ideally below 1% by volume. Their initial breakthrough came in the form 
of liquid nitrogen within microchannel heat exchangers, which exhibited exceptional heat 
removal capabilities for high heat load silicon mirrors used in X-ray applications. Following 
extensive research efforts (as documented in references [1-3]), they introduced 
nanofluids characterized by superior thermal conductivity and rheological properties 
compared to conventional fluids. Nanofluids displayed a remarkable array of 
advantageous traits including a substantially increased specific surface area, leading to 
unexpected enhancements in thermal conductivity, reactivity, and surface wettability. 
Additionally, nanofluids exhibited high dispersion stability, necessitating reduced pumping 
power to achieve equivalent heat transfer intensity. They also exhibited diminished 
particle agglomeration, thereby promoting the miniaturization of components and 
reducing surface erosion. Intriguingly, nanofluids could exhibit unusual catalytic, 
magnetic, or optical behaviours. These distinctive characteristics rendered nanofluids of 
paramount importance for a wide spectrum of scientific and technical applications. Their 
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developments [4-7] marked a significant stride in the quest to address challenges related 
to heat management and transfer in various industries. These researches opened up new 
avenues for improving heat transfer efficiency in various industries, ranging from 
electronics cooling to energy systems. Nanofluids are observed as Newtonian fluids [8-9] 
as well as non-Newtonian fluids [10-11].  

As a part of the International Nanofluid Property Benchmark Exercise (INPBE) [12], an 
effort was made to study the rheology of nanofluids [13]. Chen et al. [14] observed that 
the nanofluid's shear-thinning characteristics are contingent upon the particle volume 

fraction and the value of shear rates. For the volume fraction, 𝜙 < 0.001, shear thinning 

is absent. However, when 0.001< 𝜙 < 0.05, shear thinning becomes evident at low shear 
rates, and when 𝜙 exceeds 0.05, shear thinning behaviour is anticipated across the entire 
range of shear rates. Duan et al. [10] showed the effect of particle aggregation on the 
non-Newtonian behaviour of nanofluid. Chen and Ding [15] in their detailed rheological 
discussion of nanofluids showed that the Newtonian or non-Newtonian behaviour of 
nanofluids depends on particle size and shape, particle concentration, base liquid 
viscosity and solution chemistry. Hojjat et al. [16] studied the rheological characteristics 
of non-Newtonian nanofluids with experimental investigation. They observed that all types 
of nanofluids as well as the base fluid exhibit behaviour as pseudoplastic fluids. During 
the last decade, several studies of a wide range of nanofluids with a diverse composition, 
have found that nanofluids behave like non-Newtonian and hybrid fluids [17-26].  

Maxwell [27] introduced a significant class of non-Newtonian fluids characterized by their 
unique energy behaviour during deformation. Unlike traditional fluids, these fluids do not 
retain 100% of the energy applied to them but instead dissipate a portion. This distinctive 
characteristic manifests as a simultaneous display of both elastic and viscous properties. 
Examples of such fluids encompass glycerine, toluene, crude oil, flour dough, and dilute 
polymeric solutions, among others. The presence of nanoparticles in Maxwell fluids 
changes their rheological properties making them potentially applicable in various fields, 
including dampers and shock absorbers in vehicles, haptic feedback devices, and 
adaptive optics. Umavathi et al. [28] conducted a study on the double-diffusive convection 
within a horizontal Maxwell nanofluid-saturated porous medium by utilizing the modified 
Darcy-Maxwell model. Umavathi and Mohite [29] conducted the stability analysis, both 
linear and weakly non-linear, to investigate the convection in a porous medium-saturated 
horizontal layer containing a Maxwell nanofluid.  Ramzan et al. [30] explored the mixed 
convective flow of a Maxwell nanofluid with Soret and Dufour effects through a porous 
medium.They also considered the influence of variable temperature and concentration on 
a linearly permeable stretched surface. Jaimala et al. [31] extended the classical Horton-
Rogers-Lapwood problem to the Maxwell nanofluid in the framework of Buongiorno’s 
nanofluid model in which effects of thermophoretic and Brownian diffusions are 
incorporated in the flow. Jaimala et al. [32] investigated the double-diffusive convection 
in a Darcy Maxwell Buongiorno’s nanofluid by stimulating the flow with a modified Darcy-
Maxwell fluid model with the assumption of zero flux of nanoparticles at the boundaries. 
Sharma et al. [33] explored how the rheological properties of a Maxwell fluid impact 
natural convection in a dielectric nanofluid subjected to a vertical AC electric field. Singh 
et al. [34] investigated the movement of salt particles induced by a thermal gradient and 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 11-2023 
DOI: 10.5281/zenodo.10153201 

Nov 2023 | 165  

the drift of nanoparticles caused by Brownian motion within a Darcy porous medium 
saturated with a Maxwellian nanofluid where the flux of nanoparticles is influenced by 
Stefan's boundary flow conditions. Singh et al. [35] also delved into the study of triple 
diffusive convection with Soret-Dufour effects in a macroscopic filtration model for Darcy 
porous medium saturated by a Maxwellian nanofluid. Aziz and Shams [36] studied the 
influence of the internal heat source on the volumetric rate of entropy generation in an 
electrically conducting Maxwell nanofluid flowing over a penetrable stretching sheet 
subjected to variable thermal conductivity and thermal radiation. Xu et al. [37] explored 
the horizontal flow of an incompressible, steady Maxwell nanofluid containing gyrotactic 
microorganisms, with a focus on energy transfer. Khan et al. [38] examined the effects of 
heat and mass transfer on the transient incompressible flow of a Maxwell nanofluid, which 
was formulated using engine oil as the base fluid and molybdenum disulfide as 
suspended nanoparticles. This investigation was conducted over an infinite vertical plate 
featuring both ramped and isothermal wall temperature and concentration profiles. Wang 
et al. [39] considered the slip effects and convective boundary conditions and explored 
the inherent bio-convective motion of a Maxwell nanofluid across an exponentially 
stretching interface. Khan et al. [40] found the profiles for the velocity, temperature, and 
concentration distributions for an open channel flow of a grease-based Maxwell fluid 
with MoS2 nanoparticles suspended in it. Sangeetha et al. [41] incorporated Hall and ion 
effects into their investigation of a Maxwell fluid carrying gyrotactic microorganisms and 
nanoparticles in a non-Darcy porous environment. The study emphasizes the analysis of 
various factors, including bioconvection phenomena, thermal radiation, heat 
generation/absorption effects, and chemical reactions. 

Based on the literature reviewed, there appears to be a noticeable gap in research 
concerning the flow behaviour of Maxwell nanofluids between parallel plates. The flow of 
fluids between parallel plates holds significant relevance in both research and industrial 
contexts. Such flow configurations find applications in a wide range of areas, including, 
but not limited to, metal lubrication in bearings, food production processes, cooling 
towers, hydrodynamic devices, the petrochemical industry, fog generation and 
dispersion, as well as polymer processing. In highly conductive fluids or at low 
temperatures, like in many HVAC systems (Heating, Ventilation, and Air conditioning 
systems), the radiation is usually negligible compared to the heating from radiators. 
Further, in heat transfer applications involving nanofluids, such as in cooling systems or 
heat exchangers, the achievement of local thermal equilibrium ensures efficient heat 
transfer between the fluid and the solid nanoparticles, leading to more predictable and 
controllable thermal performance. Therefore, in this study, we aim to investigate the 
convection in a horizontal layer of Maxwell nanofluid confined between two parallel plates 
when there is no radiative heat transfer and fluid and the nanoparticles are in local thermal 
equilibrium (LTE).  

It is worth noting that previous research has primarily focused on controlling and 
maintaining a constant mass flux of nanoparticles at the boundaries. Initially, Nield and 
Kuznetsov [42] analysed thermal convection in a Newtonian nanofluid within a porous 
medium, assuming that the nanoparticle fraction at the boundaries can be managed in a 
similar manner as temperature control. However, because nanoparticles are typically on 
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the nanoscale, their size is much smaller than the characteristic length scales of the 
bounding surfaces. Consequently, nanoparticles experience minimal gravitational settling 
and have limited interaction with solid surfaces. Furthermore, their concentration near 
boundaries is typically lower than in the bulk region, reducing the likelihood of particle 
accumulation at the surfaces. Stabilizing forces help maintain a homogeneous 
suspension, thus preventing significant nanoparticle flux to the surfaces. In our study, we 
consider a more realistic scenario with no nanoparticle flux at the boundaries. We employ 
linear stability analysis and utilize the Galerkin-type weighted residuals method to 
examine the impact of various pertinent parameters on both stationary and oscillatory 
convection. Additionally, we employ non-linear stability theory to discuss the mechanisms 
of heat and mass transfer.  We discuss convection both analytically and numerically. 
 
2. FORMULATION OF THE PROBLEM 

Consider an infinite horizontal layer of Maxwell viscous nanofluid with a finite depth under 
the influence of vertically downward gravitational force. The initial state is characterized 
by the absence of flow and is subjected to a negative thermal gradient, which extends 
upward through the layer. It is considered that  

 the radiative heat transfer is neglected 

 viscous dissipation is negligible 

 the concentration of reactive species (e.g., chemicals) within the fluid is negligible 

 nanoparticles and base fluid are in local thermal equilibrium 

 there is no flux of nanoparticles at the boundaries (Baehr and Stephan [43] and Nield 
and Kuznetsov [44]). 

 boundaries are perfectly heat-conducting with * *h cT T  

Figure 1 refers to the illustration depicting the physical configuration of the problem 

under consideration 

 

Fig 1: Physical Configuration 
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Following Buongiorno [45], Umavathi and Mohite [29] and Sharma et al. [33], the mass, 
momentum and energy conservation equations for a Maxwell nanofluid and boundary 
conditions against the passive management of nanoparticles (Nield and Kuznetsov [44]), 
are taken as  
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where *
v is the velocity vector,

 
*  is the stress relaxation time,  is the density of  fluid ,

*p is the hydrostatic pressure, *  is the nanoparticle volume fraction, 
p  is the density of 

nanoparticles, *t is the time, *

cT
 
is the  reference temperature, *

hT  is the temperature at 

the lower boundary , *T  is the temperature,    is the thermal expansion coefficient of the 

fluid, g  is the gravitational acceleration vector, d  is the depth between two boundaries ,

  is the viscosity,
 
( ) fc and ( ) pc  are the heat capacity of nanofluid and nanoparticles 

respectively, k  is the thermal conductivity of nanofluid, 
BD  is the Brownian diffusion 

coefficient and 
TD  is the thermophoretic diffusion coefficient. Dimensional variables are 

denoted by asterisks.  

Introduce the following non-dimensional variables in Eqs. (1) to (6): 
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and get 

0 , v                                                                                                                         (8) 
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The non-dimensional thermo-physical parameters introduced in Eqs. (9)-(13) are 
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3. BASIC STATE SOLUTION PROCEDURE 

Consider the stationary state  
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The state given by (14) leads to the following equations: 
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Eqs. (15) - (17) subjected to the boundary conditions given by Eqs. (12) and (13), provide 
the approximated basic solutions for the temperature and concentration as  
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4. PERTURBED STATE SOLUTION PROCEDURE 

The basic state is subjected to infinitesimal perturbations and the concerned parameters 
are assumed as 
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Eliminating p  from Eq. (22) by using the operator k̂ curlcurl  and identity 
2curlcurl grad div   we get  
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5. INVESTIGATION UNDER LINEAR STABILITY THEORY 

Allowing the perturbations to be of the form 

( ', ', ') [ ( ), ( ), ( )]exp( )w T W z z z ilx imy st     ,                                                             (27)            

where l  and m  are the wave number in x  and y directions respectively and s  is the growth 

rate of perturbations, Eqs. (23) to (26) become and reordered as 
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In the context of the Galerkin-type weighted residual method for approximating solutions to 
Eqs. (28) - (31), we opt for the following trial functions satisfying the boundary conditions (31):   

1 1 1

sin , sin , sin
N N N

p p p A

p p p

W A p z B p z C N p z   
  

        with   p = 1, 2, 3, ..... N,    (32) 

where 
pA ,

pB  and 
pC  are constants to be determined. 

Considering the first approximation and taking 1N   in (32), for the existence of a non-trivial 
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where  2 2 2    .  

Eq. (33) provides the following thermal Rayleigh number: 

 
 

 

2 2 2
2

2 2
1

1
A

s Le
Ra s N Rn

Pr s sLe

  


  

     
       

       

.                                                (34) 
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5.1. Stationary convection 

From Eq. (34), we get the stationary thermal Rayleigh number at the marginal state as: 

 
6

2
1st

ARa N Le Rn



   .                                                                                             (35) 

From Eq. (35) the critical stationary thermal Rayleigh number 
stRa at the critical wave number 

2
   is obtained as 

  427
1

4

st

c ARa N Le Rn   .                                                                                       (36)    

It should be noted that though both the Darcy Maxwell nanofluid [31] and the Maxwell fluid in 
a continuous medium share the absence of the Maxwell relaxation parameter in their thermal 
Rayleigh numbers, they are distinct due to the differing non-dimensional parameters involved 
in each. Further, the presence of nanoparticles reduces the Rayleigh number by a substantial 
amount indicating that as nanoparticles are responsible for enhancing the convection in a 
porous medium, the convection is promoted by them in a continuous medium as well. 
Additionally, nanoparticles significantly lowering the Rayleigh number. This suggests that 
nanoparticles not only enhance convection in a porous medium [31] but also promote 

convection in a continuous medium. It is evident that higher values of Rn predict critical 

destabilization, which can be counteracted by cooling the bottom layer in relation to the top 
layer. This situation aligns with physical realism, as nanofluids are renowned for their higher 
thermal conductivity. 

5.2. Oscillatory convection 

For analysing the oscillatory convection, substituting 
is i  in Eq. (34), and dropping i from 

the suffix for convenience, the Rayleigh number for the oscillatory convection is obtained as 

     

2 4 2 2 2 4

2 2 2 2 2 4 2 2
1

Pr1 1

osc

A

Le
Ra N Rn

Le

      

      

      
       

        

.                               (37) 

where, the frequency of oscillation   is obtained as  

2

2 2 1 32

1

4
,

2

   




  
                                                                                                      (38)    

where 2 2 2

1 Le   ,                                                                                                          (39) 

 2 2 4 2 2 2 2 2 2 2

2 Pr Pr Pr ,ALe Le Le Le N Rn                                                       (40)              

and  6 8 2 2

3 1 Pr Pr Pr .AN Le Rn                                                                            (41) 
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Here, it is clear that in view of (38), 
3  has to be necessarily positive, providing the 

condition for the existence of the oscillatory convection. Thus, the oscillatory convection 
which was non-existent [44,46,47,49-60] exists here though with certain restriction.  
 
6. INVESTIGATION UNDER NON-LINEAR STABILITY THEORY 

To find the mode of heat and mass transfer, the thermal Nusselt number and the 
concentration Nusselt number are calculated by maintaining the non-linearity of the 
governing equations of the flow. For two-dimensional rolls consider velocity components 
in terms of the stream function    and find the perturbed state equations of motion free 

from the pressure p and the boundary conditions as:  

 
 

2

12 4

1 1

,1
1 1 ,

Pr ,

T
Rn Ra

t t x z t x x

  
   

                                        

                     (42)  

2

1

( , )

( , )

T T
T

t x x z

   
  

  
,                                                                                                (43) 

2 2

1 1

1 ( , )

( , )

A
A

N
N T

t x Le Le x z

   


  
     

  
,                                                                       (44) 

2

2
0, 0 at 0,1A

T
T N z

z z z

 


  
     
  

.                                                                      (45) 

where 

2 2
2

1 2 2x z

 
  

 
 and the dashes (“ '  ”) have been dropped for convenience.                                                                                                 

To perform the local non-linear stability analysis, we consider the following minimal mode 
Fourier expressions: 

11( )sin( )sin( ),A t x z                                                                                                  (46) 

11 02( )cos( )sin( ) ( )sin(2 ),T B t x z B t z                                                                         (47) 

 11 02( )cos( )sin( ) ( )sin(2 ) ,AN C t x z C t z                                                                 (48) 

where 11( ),A t 11( ),B t 02 ( ),B t 11( )C t  and 02 ( )C t  the amplitudes depending upon time are to 

be determined.  

Substituting the solutions given by Eqs. (46) - (48) into Eqs. (42) - (44) and considering 
the orthogonality condition with the eigenfunctions, we obtain 

 
2

411 11 11 11
11 11 112 2 2

Pr Pr 1
,A A

d A dC dB dA
A RnN C RaB RnN Ra

dt dt dt dt


  

  

 
       

 
          (49)  

 211
11 11 11 02 ,

dB
A B A B

dt
                                                                                          (50)        
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 202
11 11 02

1
8 ,

2

dB
A B B

dt
                                                                                            (51)            

 
2

11
11 11 02 11 11 ,

dC
A A C B C

dt Le


 
 

     
 

                                                                    (52)                 

 
2

02
11 11 02 02

1 8

2

dC
A C C B

dt Le



 

   
 

.                                                                           (53)  

The system of simultaneous ordinary differential equations described above can be 
effectively addressed through numerical solutions employing the Runge-Kutta-Gill 
method.  

In steady state, solving Eqs. (49) to (53) yield the following: 

22
2 2 1 311

1

4
,

8 2

A    



  
                                                                                              (54)         

 
11

11 2 2 2

11

,
8

A
B

A



 
 


                                                                                                  (55)   

 
  

2 2

11

02 2 2 2

11

8
,

8

A
B

A



  
 


                                                                                       (56)           

  
 
     

2 2 2
1111

11 2 2 2 2 2 2 2 2 2 2

11 11 11

8
1 ,

8 8 8

AA Le
C

Le A A Le A

 

     

 
 

   
    

                          (57)   

 
  

 
     

2 2 2 2 2 2
11 11

02 2 2 2 2 2 2 2 2 2 2

11 11 11

8 8
1

8 8 8

Le A A
C

Le A A Le A

  

      

 
 

   
    

  

                                                                                          
 

  

2 2

11

2 2 2

11

8
,

8

A

A



  



          (58)    

 

where 2 4 2

1 ,Le                                                                                                       (59)                 

 6 2 2 2

2 1 ,Le RaLe                                                                                                (60)                 

 8 2 2 2 2

3 1 .ARnN Le Ra                                                                                     (61)           
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7. HEAT AND NANOPARTICLE CONCENTRATION TRANSPORT 

We define the thermal Nusselt number as  

Heat transfer by [conduction +convection]
( ) =

Heat transfer by conduction
Nu t  

          

2 /

0

2 /

0
0

1 .

c

c b

z

T
dx

z

T
dx

z

 

 



  
     
  

    




                                                                                    (62)  

Using Eqs. (18) and (47) in Eq. (62), we get 

02( ) 1 2 ( ),Nu t B t                                                                                                        (63) 

by putting the value of 
02 ( )B t from Eq.(56) in Eq. (63), we get 

 
  

2 2

11

2 2 2

11

2 8
( ) 1 .

8

A
Nu t

A



 
 


                                                                                           (64)                                                                                           

Similarly, the nanoparticle concentration Nusselt number defined as 

2 /

0

2 /

0 0

( ) 1 ,

c

c

A

b

z

T
N dx

z z
Nu t

dx
z

 

  







   
  

    
  
  

   





                                                                          (65) 

is obtained with the help of Eqs. (19), (47) and (48) as 

 02 02( ) 1 2 ( ) ( ) .Nu t B t C t                                                                                          (66) 

Use of Eqs. (56) and (58) in Eq. (66) finally provides  

 
  

 
     

2 2 2 2 2 2
11 11

2 2 2 2 2 2 2 2 2 2

11 11 11

2 8 8
( ) 1 1 .

8 8 8

Le A A
Nu t

Le A A Le A


  

     

 
    
   
 

                  (67)  

 
8. RESULTS AND DISCUSSION 

8.1. Linear Stability Analysis 

Figs. 2(a-c) show the behaviour of Rayleigh number Ra  with respect to wave number ,  

in the context of the stationary convection. The behaviour of various parameters is shown 
by keeping the Lewis number Le , the concentration Rayleigh number Rn, and the 

modified diffusivity ratio NA at fixed values [ 100Le  , 1Rn   and 1AN  ], by varying only 

that parameter whose behaviour is to be evaluated. It is observed that on increasing the 
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value of either the modified diffusivity ratio AN  [Fig. 2(a)], or the concentration Rayleigh 

number Rn  [Fig. 2(b)], or the Lewis number Le  [Fig. 2(c)], the critical Rayleigh number is 

decreased highlighting the destabilizing influence of these parameters. Since the 
Brownian diffusion coefficient, DB, exhibits an inverse relationship with the Lewis number, 
Le the Brownian motion of nanoparticles plays a crucial role in augmenting the 
convection. It is worth noting that the impact of the Lewis number Le  in this context is 

contrary to its effect on the Newtonian nanofluid or Maxwell nanofluid saturated in a 
porous medium [29,48] and in agreement with the convection in a Rivlin Erickson 
nanofluid [46]    
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(c) 

 

Fig 2: Trend of the stationary convection for (a) AN , (b) Rn  and (c) Le  

Figs. 3(a-e) show the behaviour of the Rayleigh number Ra  for oscillatory convection 

concerning the Lewis number Le , the Prandtl number Pr , the concentration Rayleigh 

number Rn , the modified diffusivity ratio AN , and the stress relaxation parameter    

respectively. Fig. 3(a) shows that on increasing the Lewis number Le  the Rayleigh 

number is increased which is again reverse to its effect on the oscillatory convection of a 
Maxwell nanofluid in a porous medium or a Maxwell nanofluid based on a macroscopic 
filtration model [29,31]. The effect of the Prandtl number Pr  is revealed in Fig. 3(b) by 
fixing the other parameters. The effect of Pr is also stabilizing. Figures 3(c) to (e) explain 
that on increasing the values of any of the parameters, the concentration Rayleigh 

number Rn , the modified diffusivity ratio AN  and the stress relaxation parameter  , the 

Rayleigh number is decreased i.e. all these parameters are enhancing the convection 
and therefore, the system is destabilized.  
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(e) 

 

Fig 3: Trend of the oscillatory convection for (a) Le , (b) Pr , (c) Rn , (d) AN , and (e)  

A clear consequence for stationary as well as oscillatory convection is presented in Figs. 
4(a-c). It is interesting to note that the oscillatory convection not only occurs at a later 
stage but it also diminishes within the wave number range of 3.8 to 5.24 for different 
parametric situations and finally, only stationary convection persists in all the cases. 
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(b) 

 

(c) 

 

Fig4: Comparison between stationary and oscillatory convection for (a) Le , (b)

Rn ,and (c) AN  

8.2. NON-LINEAR STABILITY ANALYSIS 

8.2.1. Steady Analysis 

For steady state (t = 0), Figs. 5(a-c) show the behaviour of the thermal Nusselt number 
Nu  and the concentration Nusselt number Nu  with respect to the thermal Rayleigh 

number Ra  for different values of the modified diffusivity ratio AN , the Lewis number Le  

and the concentration Rayleigh number Rn . In all the figures, a common trend emerges 

initially, where both the heat and mass transfer rates experience a sharp increase. 
Additionally, it is evident that the rate of mass transfer initially surpasses that of heat 
transfer. However, as the thermal Rayleigh number increases, a pronounced and 
continuous decline in the mass transfer rate becomes apparent while the heat continues 
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to rise at a moderate rate resulting in a higher rate of transfer at and beyond a certain 

threshold value ( * 1374Ra  ). 

In Figure 5(a), we examine the behaviour of the modified diffusivity ratio AN  while keeping 

Le  and Rn  fixed ( 10,Le  0.1Rn  ). It is unveiled that on increasing AN , rate of transfer of 

heat increases while AN  has a dual character when it comes to the rate of transfer of 

mass, This finding is somewhat consistent with the observations made by Jaimala et al. 
[31], but it differs from the convection discussed by Umavathi and Mohite [29], where an 

increase in AN  led to a an increase in mass transfer. 

Fig. 5(b) is drawn for Rn  by fixing 10Le   and 3AN  . It is revealed that on increasing Rn

convection starts at a lower Rayleigh number Ra . It is also noticed that on increasing Rn  

the rate of mass transfer increases up to a certain value of Ra  but after that it starts 

decreasing. Thus, in the steady state the dual behaviour of Rn  is noticed. Here, it is worth 

mentioning that the behaviour of AN  and Rn  concerning heat and mass transfer aligns 

with the observations made by Jaimala et al. [31]. However, this is in contrast to the 
findings of Umavathi and Mohite [29] for a Maxwell nanofluid saturated in a porous 

medium. In Figure 5(c), for fixed 3AN   and 0.1Rn  , we examine the impact of the Lewis 

number Le .It is evident that as Le  increases, the Nusselt number Nu  decreases, 

indicating a reduction in the heat transfer rate. Furthermore, at higher values of Le , the 

mass transfer parameter Nu  experiences a rapid initial increase, followed by a 

continuous decline. As the Rayleigh number Ra  surpasses the value of 2000, this effect 

becomes progressively weaker, ultimately reaching a rate lower than that observed at 
lower Le . It's worth noting that the behaviour of Le  concerning mass transfer holds true 

for both the flow of a Maxwell nanofluid between parallel plates, as considered here, and 
when it is saturated in a porous medium up to a certain Rayleigh number threshold 
[29,31].  
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(b) 

 

(c) 

 

Fig 5: Steady state behaviour of Nu  and Nu  vs. Ra  for different values of (a) AN , 

(b) Rn  and (c) Le  
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by figs. 6(e) and 6(f), it is clear that the mass transfer which was taking place through 
convection diffuses rapidly for larger Rayleigh number.  

427 4crRa                                                      10 crRa Ra   

(a)                                                                    (b) 

 

(c)                                                                    (d) 
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(e)                                                                    (f) 

 

 

Fig.6: Time independent patterns of streamlines, isotherms and 

isonanoconcentrations against the thermal Rayleigh number for 10Le  , 0.1Rn   

and 3AN   
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Fig.7: Variation in Nu  with time for different values of (a) Le  (b) Rn   (c)    (d) Pr  
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and (e) AN  

In Figs. 8(a-e) it is observed that initially the rate of transfer of mass increases but 
gradually decreases over time eventually showing a steady behaviour. It is observed that 

if any of the parameters AN , , Rn  and Pr  is increased, Nu
 decreases [Figs. 8(a-d)]. 

Again the behaviour of these parameters runs contrary to what was discussed in [29] and 
[46]. Regarding the Lewis number Le , it is unveiled that on its increment, the rate of 
transfer of mass is increased up to a certain time but as the time passes, it gradually 
decreases, reducing the mass transfer rate. (Fig. 8e). Thus, the Lewis number exhibits a 
dual behaviour resembling an exponential type, transitioning from initial vigorous 
oscillations to a steady rate, as seen in reference [31]. It is to be mentioned that in a Rivlin 
Erickson fluid [46], it just enhanced the mass transfer rate. 
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(e) 

 

Fig.8: Variations in the concentration Nusselt number with time for different 

values of (a) AN , (b)  (c) Rn  (d) Pr  and (e) Le  
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(e)                (f) 

 

Fig.9: Variations of streamlines, isotherms and isonanoconcentrations with time 
 

9. CONCLUSIONS  

In this study, we have examined convection within a layer of Maxwell nanofluid 
constrained between two parallel plates, with no nanoparticle flux at the boundaries. 
Under the linear and non-linear stability theories following conclusions have been drawn: 

9.1. Stationary and Oscillatory Convection 

1. Nanoparticles trigger stationary convection at an earlier stage. 

2. The Lewis number Le , concentration Rayleigh number Rn , and modified diffusivity 

ratio AN  destabilize the stationary convection. 

3. Both the Lewis number Le  and the Prandtl number Pr  stabilize the oscillatory 

convection. 
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4. The concentration Rayleigh number Rn , the modified diffusivity ratio ,AN  and the 

stress relaxation parameter   destabilize the oscillatory convection. 

5. Convection sets earlier in stationary mode of convection than transit to the 
oscillatory convection. 

9.2. Steady State Convection   

1. On increasing the modified diffusivity ratio AN , and the concentration Rayleigh 

number Rn , enhancement in the rate of heat transfer is noticed while the Lewis 

number Le  has a reverse effect. 

2. In case of transfer of mass AN , Rn , Le  have dual behaviour. 

3. The effect of AN  and Rn  regarding the heat and mass transfer is in contrast to the 

effect of these parameters on a Maxwell nanofluid saturated in a porous medium. 

4. The magnitude of stream function increases on increasing the Rayleigh number. 

5. The mode of heat transfer initially appears in the form of convection for a small value 
of Rayleigh number, but as the Rayleigh number increases the convection falls weak 
and conduction becomes more prominent. 

6. Mass transfer involves a combination of partial convection for low Rayleigh 
numbers, but for high Rayleigh numbers, mass transfer relies solely on diffusion. 

9.2.2. Unsteady State Convection 

1. In contrast to the convection in a Rivlin-Erickson fluid, there is a decline in the heat 
transfer rate.  

2. Mass transfer rate decreases as time passes for increasing values of parameters

AN , , Rn  and Pr  but the Lewis number Le  shows a dual character. 

3. The behaviour of parameters AN , , Rn  and Pr  is to depress the rate of transfer of 

mass which was supportive for a Maxwell fluid in a modified or a conventional Darcy 
Maxwell nanofluid. 

4. The magnitude of the stream function remains constant as time passes. 

5. Over time, both heat and mass transfer intensify through increasingly stronger 
convection. 

 
Nomenclature 

c                specific heat of fluid at constant pressure (J kg-1 K-1)
 
 

d                dimensional depth between two boundaries (m) 

TD              thermophoretic diffusion coefficient (m2 s-1)  

BD              Brownian diffusion coefficient (m2 s-1)  
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g                acceleration due to gravity (m s-2) 

k                thermal conductivity of the nanofluid (Wm-1K-1)  

Le              nanofluid Lewis number 

AN             modified diffusivity ratio 

BN             modified particle density ratio 

*p              hydrostatic pressure (Pa) 

p               dimensionless hydrostatic pressure  

Pr              nanofluid Prandtl number 

Ra              thermal Rayleigh number 

Rn              nanoparticle concentration Rayleigh number  

*T              temperature (K) 

T               dimensionless temperature 

*

cT              reference temperature at the upper boundary (K) 

*

hT              temperature at the lower boundary (K) 

*t               time (s) 

t                 dimensionless time  

*
v              nanofluid velocity (s-1) 

v               dimensionless velocity 

* * *( , , )u v w   velocity components 

( , , )x y z      dimensionless Cartesian coordinates 

( ) fc         heat capacity of nanofluid (J K-1) 

( ) pc         heat capacity of nanoparticles (J K-1) 

Greek Symbols 

              density of the base fluid (kg m-3)  

p             density of nanoparticles (kg m-3) 

              dimensionless frequency of oscillations      

              dimensionless wave number 

              dimensionless stream function 

               dimensionless stress relaxation time parameter 
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              dimensionless volume fraction of nanoparticles  

*

0             reference value of nanoparticle volume fraction 

f             thermal diffusivity (m2 s-1) 

              thermal expansion coefficient (K-1) 

              viscosity (Pa s) 

Subscripts  

b                basic state value 

c                upper boundary 

f                fluid 

h                lower boundary 

0                reference value 

p                nanoparticle 

Superscripts 

*                 dimensional variable 

'                  infinitesimal perturbed variable 

osc              oscillatory convection mode 

st                stationary convection mode 

Operators 

2

H             
2 2

2 2x y

 


 
 

2

1             
2 2

2 2x z

 


 
 

2             

2
2

2H
z


 


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