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Abstract

In this study, we utilize an inertial extrapolation scheme to achieve rapid convergence for the Cayley
variational inclusion problem and the equivalent Cayley resolvent equation problem. We have outlined
several strategies to address both problems. Still, our primary focus is on validating the rapid
convergence for the Cayley variational inclusion problem in a real Banach space and the Cayley
resolvent equation problem in a g-uniformly smooth Banach space. We employ an inertial extrapolation
strategy in both cases to achieve rapid convergence. A mathematical experiment is presented to
demonstrate Swift Convergence.
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1. INTRODUCTION

The variational inclusions, developed by Hassouni and Moudafi, are the generalized
forms of variational inequalities. Variational inclusions facilitate the examination of a
broad spectrum of inter connected and independent problems in the fundamental and
applied sciences. Some examples of these issues include those in the domains of
elasticity, structural analysis, oceanography, image processing, physics, and
engineering sciences. Noor proposed the concept of resolvent equations. The Wiener-
Hopf equations are extended and transformed into resolvent equations. Many
publications have shown the equality between variational inclusions and resolvent
equations. If projection approaches fail to solve the variational inclusion problem, the
resolvent operator technique can be employed to solve it. The literature has multiple
generalized resolvent operators that involve various monotone operators. Maximal
monotone operators are undeniably crucial elements of modern optimization. In
addition, the Cayley approximation technique can convert set-valued monotone
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operators into single-valued monotone operators via regularisation. The Cayley
approximation operator is applied in various scenarios, such as solving initial value
problems for linearised equations of coupled sound and heat flow, describing wave
equations as second-order partial differential equations, and modeling heat distribution
over time in a fixed region of space using the heat equation. The utilization of
generalized resolvent operators has been vital in the advancement of numerous
iterative algorithms. However, employing an algorithm that promotes rapid convergence
for the sequence generated by the method is consistently beneficial. Various authors
have suggested the use of inertial extrapolation systems that incorporate the inertial
extrapolation scheme {e,(x, — x,—1)}, Where e, represents a factor that enhances the
convergence rate of the method. Polyak initially proposed the inertial-type iterative
technique for the heavy ball method. The iterative algorithm of inertial nature involves
two phases in which the succeeding iterations are derived by utilizing the preceding two
terms, as exemplified. In this paper, we analyze the Cayley variational inclusion problem
and its corresponding Cayley resolvent equation problem, which was described earlier.
In addition, we explore various approaches to address the Cayley resolvent equation
problem and Cayley variational inclusion. Our research is centered on the speedy
convergence of both issues through the utilization of an inertial extrapolation scheme.

2. FUNDAMENTAL TOOLS AND CONCEPTS

Let us consider B is called a real Banach Space and B* s its topological dual
equipped with the norm || . || and duality pairing (.,.) between B and B*. Consider 27
represents the set of all non-empty subsets of B and C(@) be the family of nonempty
compact subsets of B

For g > 1, the generalized duality mapping N, : B - B* is defined by N, (x) = {y €
B*:(x,y) = |lx[|? and || y || = lIx|*""} Vv,x€B.

If g = 2 then JV, is called normalized duality mapping. Especially, N := JV, become be
a normalized duality mapping on B.Then very familiar that Ny (x) = llx|192 2V, (x) when
x # 0 and NV, (x) be a subdifferential of functional (%)ll . || at x. The mapping IV, is
single-valued if B is uniformly smooth.

Lemma 1. A real uniformly smooth Banach space B is g-uniformly smooth if there
exists a

constant C; > 0 such that |lx + yll? < [Ix[|?9 + gy, N, (X)) + C,llyll? V., x,y€B

We mention the following standard definitions before offering those necessary for
the paper's presentation and readers' convenience. As a result, let us consider a real
Hilbert space B = H.
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Definition 2.1. A single-valued mapping S : H —» H is said to be
() Monotone if
S-S, x—y)=0 V,x,y € H
(i) Strongly monotone if there exists constant § = 0 such that
(S =S, x—y)zssllx+yl> vV,x,yeH

Definition 2.2. A set-valued mapping D : H —» 2 is said to be monotone for allu €
D(x),

v € D) if
(u—v,x—y)=0 V,x,y€EH,

Definition 2.3. Let us consider S: H - H be a single-valued mapping. A set-valued
mapping D : H - 2 is said to be §-monotone if D is monotone and

[S+¥yD|H=H, >0 isaconstant

This paper's presentation requires the following generalizations of Definitions 2.1-2.3
above in a g-uniformly smooth Banach space.

Definition 2.4. A single-valued mapping S: B —» B is said to be
(i) Accretive if
(S) =S, Ny(x—y) =0 Vx,y€eB
(i) Strongly accretive if there exists constant § = 0 such that
(S-S, N(x—y)=6sllx—yll?  vx,ye B
(iii) Lipschitz continuous if there exists constant Az = 0 such that
[SC) =S| < Asllx—yll, Vv,x,yeB

Definition 2.5. A set-valued mapping ® : B — 28 is said to be accretive for all u €
D(x),

v € D) if
(u—v,Ny(x—y))=0 Vx,y€H,

Definition 2.6. Consider S:B — B be a mapping. The set-valued mapping ® : B —
2B is said to be S accretive if D is accretive and

[S+yD]B=38 y>0 isa constant.

It is commonly recognized that the resolvent operator of the type [I + y D]™! where
D is a set-valued monotone mapping, y is a positive constant, and [ is the identity
mapping, providing the foundation for all splitting techniques (2).
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Definition 2.7. The resolvent operator in}?y : H - H which is denoted by
RO, () = [[+yD]™*(x) V,x€H,

I is identity mapping and y > 0 is a constant.

Definition 2.8. The Cayley approximation operator Cfﬁ, : H - H which is denoted by
CH (x) = [2R7, —11(x) V,x € H

I is identity mapping and y > 0 is a constant.

Definition 2.9. Let us consider $: 3 — B is a single-valued mapping and ® : B - 238
is a set-valued mapping. The generalized resolvent operator ER%?V : B > B with respect
to S and D which is denoted by

Ry, () =[S + v®] ')  v,xeH
y > 0 is a constant.

Definition 2.10. The generalized Cayley approximation operator Cg), : B - B which is
denoted by

ng (x) = [ZER% -S| V,x €H
y> 0 is a constant.

Proposition 1. Let us consider S:B — B is called strongly accretive mapping with
constantr and D : B —» 28 is S accretive set-valued mapping. Then the generalized
resolvent operator iRS?y : B > B is Lipschitz continuous with constant = such that

IRS, ) - RS, || <ilx—yll  V,xyeB

Definition 2.11. A single-valued mapping 4 : B — B is called Lipschitz continuous if
there exists a constant 4, = 0 such that

IAG) =AW = Aallx —yll V. x,y €B
Definition 2.12. Consider a multi-valued mapping S :B — B is said to be D-Lipschitz
continuous. Then there exists a constant AD*s‘ > 0 such that
D($0),50)) < Apgllx =yl V,x,y € C(B)
Definition 2.13. Suppose N : H x H — H is a single-valued mapping and © : B x B —
2B is a multi-valued mapping. Then

0] N is said to be Lipschitz continuous in the first argument if there exists a
constant 1y, > O forallx,y € H,u; € D(x),u, € D(y) such that

INCuy,.) = NQuz, Dl < Ay, llug — |
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(i) N is said to be Lipschitz continuous in the first argument if there exists a constant
Ay, >0, forallx,y € H,v; € D(x),v, € D(y) such that

INC,v) = NG, vl < /11\12”171 — .||
Lemma 2. Consider {l,,} be a sequence of non-negative real numbers such that
Spe1 S (A= By + BnOn+ ¥ V,n>1
Where, 1. {8,} € [0,1] X fn =
2. limsupg, <0
3. % 20,(n=1), T, fp <o
Then [, - 0,as n— ©
Proposition 2. (i) If $: B - B is r-strongly accretive, fs - expansive, As -Lipschitz
continuous and generalized resolvent operator ER;% : B> B is %-Lipschitz continuous
and the generalized Cayley approximation operator Cs?y : B —» B associated with $.Then
the generalized Cayley approximation operator C;;,Dy : B> B is 6,-strongly accretive
associate with S, then we have
(€200 - 2,0, Ny(S() = 5(3)) = b.llx — vl

224" —Thg q q-1
Where 6, = —— T #0, ,Bgr > /1C/15~ v,y,6,A>0
(i) If § is As -Lipschitz continuous, r-strongly accretive and ER% is %-Lipschitz
continuous, then the generalized Cayley approximation operator ng,)y is A¢ -lipschitz
continuous that is

A§T+2

€2, = €200l < Acllx =yl , where A =

Proof: (i) From the definition of generalized duality mapping, expansiveness and

Lipschitz continuity of ®3,,C5, and S, We have,

(€3, — €2, Ny(S(x) —S())
=((2%3, —S)) — (2%, —$)1) N (Sx) = S»))
= (2RY, (1) =S () — 2RT, ) +S (), Ny(S(x) - S(»))
= (2(RT, ) — R, M) =S ) =S ), Ny($Sx) = SB»))
= 2((R3, () — N3, 1), Ny (5 =)
—(S =5, N ($(x) =S))
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~ ~ -1 ~ ~
>2|| %3, &) — R, W[5 = S[I" =[5 = S»)||°
2 q-1 - q
> 2 |lx — ylIAZ lx = yl1971 = B llx — |
2 ,q-1
> 2237 lx = yll7 = Bdllx — ylI9
> (A = Dl -yl
1 -1
>— (228 —rBHlx -yl
>0 llx -yl Where 6, =—(248" —rpd),

Thus, the generalized Cayley approximation operator is 6. - strongly accretive
concerning S.

(i) Using Lipschitz continuity of accretive S and generalized resolvent operator Ré’fy
We evaluate  ||C3,(x) — C3, )|
= 1298, () -5 ) — 2%, ) - S|
=2|%S, ) -%, W - 5 -30 ||
< 2= e —yll + Al x =y
< CG+a9)llx -yl

<cllx—yll where, 2. = %(2 +75)

D

Thus, the generalized Cayley approximation operator (s, is A¢ —Lipschitz continuous.

3. STATEMENT OF THE CAYLEY INCLUSION PROBLEM

LetS: B — B be a single-valued mapping and also N :B x 3B — B be another single-
valued mapping and D : B - 28 be a set-valued mapping and P,Q : B — C(B) are
multi-valued mapping. Let Cg?y be the generalized the Cayley approximation operator.
We consider the following Cayley variational inclusions problem.

Find x€B,u€ P (x),v e (x) such that

0€CP,(x) +Nwv) +D(x) (1)

If Cg?y(x) =0 and N(u,v) = 0 then the problem (1) reduces to the problem of finding

x € B such that
0 € D(x), which is the fundamental problem represented by Rockafellar.
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Lemma 3. Cayley variational inclusion problem (1) has the solutions x € B ,u €
P(x), v € Q(x) if and only if the following equation is satisfied:

x =R, [S(x) —yN(u,v) —yC3, ()] 2
Proof: Let, x € B satisfies the equation (2).

Then x = i}{%[ﬁ(x) —yN(u,v) — )/C_?y(x)]

or,x =[5 + yD ]_1[§(x) — yN(u,v) — yC3,(x)]
or,[S + yD () = [S(x) —yN(w,v) —yC3, (x)]
or,S(x) + yD(x) = S(x) —yN(u,v) — VCS%(X)
Or, yD(x) = —yN(u,v) — yC5), (x)

0€ C5,(x) + N(u,v) + D(x) which is the required Cayley

variational inclusion problem (1).

Iterative Algorithm 1: Determine the sequence {x,},{u,}, and {v,} for any x, € B
uy € P(x,), and v, € Q(x,), from the following Scheme

Xn+1 = ERS?]/ [g(xn ) —¥YN(up, v) — chy(xn)] 3)
where, n =0,1,2,3, ... ... ... and y > 0 is a constant.

Another way to write equation (2) is as follows:

YN, v) -y €2, ()] (@)

We propose the following iterative strategy based on (4).

S(x)+S5(x) _

D
X = ERS,)/[ s

Iterative Algorithm 2: Determine x,,1, u,4+1 and v, ., using the recurrence relation
for any x, € B, uy € P(x,), and v, € Q(x,), we have

S )+S(xn41)
Xn+1 = (1 - an)xn + anm:s”g,y[% - VN(un+1: vn+1) - VCSE‘_Dy(xn+1)] (5)
where, n = 0,1,2,3, ... ... ... and y > 0 is a constant and «,, € [0,1]

The predictor-corrector approach is used to describe the following inertial extrapolation
scheme.

Iterative Algorithm 3: Determine x,,.,, u,4+; and v,,; using the recurrence relation
for any x, € B, uy € P(x,), and v, € Q(x,), we have

Wp = X +en(Xy — Xp_q) (6)
- VN(un' vn) - )/CSS?Y(Wn)] (7)

where, y > 0 is a constant and e, a, € [0,1], e, is the extrapolating term. V,n > 1.

S(xn )+S(wn)

D
Xnp1 = (1 —ap)x, + anmiy[ >
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4. CAYLEY RESOLVENT INCLUSION PROBLEM.

To get the existence and convergence result for the Cayley variational inclusion
problem (1), one can utilize the aforementioned algorithms 1 and 2. Finally, we provide
a convergence result for the Cayley variational inclusion problem (1) in the sequel by
using the inertial extrapolation scheme 3. Regarding the Cayley variational inclusion
problem (1), we formulate the following Cayley resolvent equation problem.

Find x,Z € B, u € P (x),v € Q (x) such that

Cs?y(x) + N(u,v) + y‘lTS%(z”) =0 (8)
Where, T3, (2) = [I - SRZ,](2) and  S[RT, (D] = [S(RE)](® (A)

The following Lemma ensures that the Cayley variational inclusion issue (1) and the
Cayley resolvent equation problem (8) are comparable.

Lemma 4. The Cayley variational inclusion problem (1) has the solutions x € B, u €
P (x),

v € Q (x) if and only if the Cayley resolvent equation problem (8) has the solutions

x,7€ B ,u€ P(x),veQ(x) thatis, § is one-one and

x = Ry, (%) (9)
Z=$(x) = YN v) - yCg, (x) (10)

where, y > 0 is a constant.

Proof: consider x € B,u € P (x),and v € Q (x) are the solutions to Cayley's variational
inclusion problem (1). Then according to Lemma 3, it fulfills the formula:

x = 9D, [500) — YN (w,v) — yCE, ()]

Where, x = Ré%,(z)

and z= S(x) —yN(u,v) —yC3,(x)

Using (9), (10) becomes
Z= SR3,(2) —yNwv) - yC5,(x)
or,[I - S(R,)E@ = —yN(u,v) —yC3,(x)
0r,T5, () = —=yN(w,v) - yC3,(x)  [By (A)]
Or,—y 1T (2) = —N(w,v) — C5, (x)

Thus C3,(x) + N(w,v) + y™' T, (2) =0  which is the required Cayley resolvent

equation problem (8).
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Conversely, Let, x,Z€B u€ P (x), and v € Q (x) are the solutions to the Cayley
resolvent equation problem (8).

Then we have, C2,(x) + N(w,v) + y 1 TS, (2) =0

Y Y
Or,—y~1 TS%(Z) =N(u,v) + ng(x)
0r,C5, () + Nw,v) = —y~ [ - §(R3,)I@)

or,yCs,(x) + yYN(u,v) =[S(R,)]@ - (2
Or,yCS%,(x) + yN(u,v) = [5(91%)][.?(9() —yN(u,v) — ngy(x)]
—S) —yNw,v) - yC35,(x)
This implies that, ~ S(x) = S[R3, (S(x) —yN(w,v) — yC3,(x)]
Since $is one —one, we have, x = K3, [S(x) — yN(u,v) — y(C5),(x))]

The solutions to the Cayley variational inclusion problem (1) are x € B,u € P (x), and

v € Q (x) as indicated by Lemma 3. We present the Cayley resolvent equation problem
(8) solution strategy based on Lemma 4.

Iterative Algorithm 4: Utilizing the following Scheme, determine the sequence {x,},
{z,}, {u,},and {v,} for every x,,2, € B, uy € P (xy), and v, € Q (x,),

Xn = iR?,y(in) (11)
Zne1 = SCtp) = N(un, vn) — ¥(C5, (x2)) (12)
where, n=0,1,2, 3....... and y > 0 is a constant

Now we rewrite the Cayley resolvent equation problem (8)
2=5)—-Nwv)—C5,)+ I -y )Ts (2 (13)
Verification.
We have from (9).

2=5(%2,() - Nwv) - C5,(0) + TS - v T2

Since [ —SR3,] =TS, Then we have,

[1 = 3%8,](2) = —N(wv) - C,() + TRe(2) - vy T,(2)

07, TS, (2) = —=N(w,v) — €3, (x) + T3, (2) — vy T3, (2)

Or,C5,(x) + N(u,v) + y7'T5, (2) = 0

We propose the iteration approach below, based on the fixed-point formulation (13)
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Iterative Algorithm 5. Utilizing the foﬂowing §cheme, determipe the sequence {x,},
{z,}, {u,}, and { v,} for every x,, 2, € B, uy € P(x), and v, € Q(x,),
Xn = R5y (2n)
and  Znyy = $(tn ) = N(un, v) = o, () + (1 = ¥ Tg, (20)
where, n = 0,1,2,3, ... ... ... and y,6 > 0 is a constant
The Cayley resolvent equation problem (8) can also be expressed as follows:

x=x—8[7- 5(9@(2)) +YN ) + yCE,(0] V,621 (14)
Verification:
x =x—6[[I — S(RF,)I@ +yNw,v) + yC5,(x)]
Or,x = x — 6[TS~C’DY(Z) +yN(u,v) + yCS%(x)]

or, 6[T§?,(Z) + yN(u,v) + nyy(x)] =0

Or, Tgf%,(Z) +yN(u,v) + yCS%(x) =0

Or,C5,(x) + N(u,v) + y1 T5,(2) = 0 which is the required Cayley

resolvent equation problem (8)
We can propose the following iterative approach using the fixed-point formulation (14).
Iterative Algorithm 6. Utilizing the foII~owing S~cheme, determing the sequence { x,},
{z,}, {u,},and { v,} forevery x,, 2, € B, uy € P (xy), and v, € Q (x,),
Xner = X = 8[2n = §(RE,(2n)) + YN va) + ¥CE, ()]
where, n = 0,1,2,3, ... ... ... and y,8 > 0 is a constant.

Schemes 4-6 can be used to get the Cayley resolvent equation problem's existence and
convergence results (8).

We propose an inertial extrapolation strategy for the Cayley resolvent equation issue (8)
that will speed up the pace of convergence.

Again we rearrange the equation (10),
S)+S(x)
T —yN(w,v) — yCS,(x) (15)

Using (15), we create the following implicit strategy for solving the Cayley resolvent
equation problem.

7=

Iterative Algorithm 7. Utilizing the following Scheme, determine the sequence {x,},
{z,}, {u,},and {v,} for every x,, 2, € B, uy € P (xo), and vy € Q (x,),

Oct 2024 | 214



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)
ISSN: 1671-5497

E-Publication: Online Open Access

Vol: 43 Issue: 10-2024

DOI: 10.5281/zenodo.13986313

Xn = ERES‘?)/ (Zn)

and Zne1 = (1 —ap)zy + ay —YN(Unt1, Vns1) —

S(xn)+S(Xn+1)
=
VC_sz?y(xn+1)].

where, n =0,1,2,3, ... ... ... and y > 0 is a constant a,, € [0,1]

Using the predictor-corrector method, we create the inertial extrapolation strategy to
solve the Cayley resolvent equation issue (8)

Iterative Algorithm 8. Utilizing the following Scheme, determine the sequence {x,},
{z,}, {u,},and {v,} forevery x,,2, € B,uy € P (xy), and v, € Q (x),

Wy = Zp +en(Zn — Zn—1) (16)
- yN(un' Un) - ]/C?V(Wn)] (17)

where, y > 0 is a constant and e,, «, € [0,1] such that >, a, = and e, is the
extrapolating term. v n > 1.

S(2n)+S(wn)

and Zpy1 = (1 —an)Zp + anf 2

5. MAIN RESULT

Initially, we discuss scheme 3, the convergence for the Cayley variational inclusion
problem (1) in real Banach space. For the Cayley resolvent equation problem (8) in
real g-uniformly smooth Banach space, we subsequently prove the convergence of
scheme-8.

Theorem 1. Consider B is real Banach spaces and S$: B — B is a single-valued
mapping such that S is r-strongly accretive and As -Lipschitz continuous. Let ® : B — 2B
be S -accretive set-valued mapping and P,Q : B —» C(B) are multi-valued mapping.
Suppose that ir{;?y:@a@' is a generalized resolvent operator such that SR% is

%—Lipschitz continuous and ng?y : B— B is the generalized Cayley approximation

operator such that ng,)y is A, —Lipschitz continuous. Then the following condition is
satisfied.

0<1—a,+%2A+ %y(Ale% + An,Agy ) + (%Ag +%y,1€) <1 18(A)

As <r+yA, 18(B)
Where A, = 2(ar+2),7 # 0,y # 0.Let, ey, ay, € [0,1] e, is the extrapolating term.V n > 1
suchthat Y5, a, = aswellas Yo, e (%, — 2xp_1 + xp_3) < ®© (29)

Then sequence { x,}.{ u,}, and {v,} are generated by the iterative algorithm 3
strongly converges to the solution x € B, u € P(x), and v € Q(x) of Cayley variational
inclusion problem (1).
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Proof: We have
lons1 = Xall = {1 = @p)xn + @n Ry (S (xn) + S(Wn)) — YN (t, v)
—yC3, w1} — {(1 — @p)xn-1 + @y RS, (S (xn-1)
+8(Wp-1)) = YN (Up_1, V1) = ¥C5), (Wn_) 1}
= [|(1 = ap) (tn = Xn_1) + an{RS, G (xn) + S(wy))
—¥YN (y, v) = ¥CE, Wi)] = RE, [2(S (1) + S(Wy—1))
—YN(Un—1,Vp-1) = ¥C3, Wn-D)1}|
< (1 = a)||xn = Xpal| + anl RS, G (en) + S(wp))
—YN(uty, v) = ¥Cs, W)l — K3, [H(S (nt) + S(Wn-1))
~YN(tp—1,Vn_1) = ¥CE, W1l (20)
Using Lipschitz continuity of generalized resolvent operator RY,, generalized Cayley

S,y
approximation Operator ng?y , from (20) we have

241 = 2%nll < (1 = @)l |xn = xpoa || + 22135 Cn) + S(Wn)) — 2(S (xn-1)
+S(Wp-1)) = Y{N (n, ) — N(Up_1, 7n_1)}
—¥{CS, (wy) — €2, (wp_ |
< (1 = ap)llxn = Xnoal |+ 22(SCen) = G-I + 22 11S (W)
~SWan_DI| + 2L IN(u, v) = N, v
+ 2221165, (W) = €, (w1
< (1 = an)llxn = xn-all + 32 Asllxn — X4 || + %/1§”Wn — Wn_1]|
+ 28y AW = Wl + LN iy v) = Ny, v (22)
Using D -Lipschitz continuity of N in both arguments, Then we have
[| N(un, Vn,) — N(Up—1, Vn-1) ||
= |IN(up, vy, ) = N(Un_1, ) + N(up_1, V) — N(up_1, V1) ||

< [IN(un, V) = N(un—1, V)| + [IN(Up—1,v) —
N(un—1: Vn—l)ll

< ANlllun - un—l” +AN2||vn - vn—l”

< ANlﬂ(IS (xn), p(xn—l)) + ANZD(G(xn)' G(xn—l))
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< ANy by X0 = Xp-all + An,Agg X — X1l
< (A Apy + Ay g 1 = s (22)
Now combining the equation (21) and (22) we get
”xn+1 - xn” < (1 - an)”xn - xn—l” + %Afllxn - xn—l” +%A§||Wn - Wn—l”
+ 2y Aliwn = Wastll + 2y (A Apy + AnyAge M 1on — sl
S (1= + 225+ 2y, Apy + AnyAge ) 1%n — Xnoall
+(52 s + 2y AWy — Wiyl (23)
Using (6), we get
Wn, = wr_all = {xn + en(xn — xp-1)} — {xn-1 + en(xn_1 — x5}l
”xn + en(xn - xn—l) — Xp-1— en(xn—l - xn—z)”
= |lxp — xp—q + en(n — 251 + x5 5)l
< ”xn - xn—l” + en”xn - an—l + xn—2” (24)
we have from (23) and (24)

2ne1 = Xnll S (1= @t + 22 25 + 22y (A, Apy + An, g )20 = Xnal|
+(2 25+ 2yA) {llxn = Xn-all + enl X0 — 2201 + xp_o|[}
S{—an+ 22+ 2y Asy + Ay Ag,) + (G245 +2yAc )}
1260 = Xnall + (5245 + 2y Ac Jenl1%n = 2Xn_g + X
< 91(X)||xn - xn—l” + Hz(x)en”xn - an—l + xn—Z” (25)
Where, 0;(x) =1 —an + 225+ 2y(Ay, Apy + A, Ag,) + (5245 +2yAc) and 6,(x) =
s +2yA
2r S r y C
Let us consider 0 < 6;(x) <1 and 0 < 6,(x) < 1, From condition 18(A) and 18(B),

By condition (19), We have, Yo enl|Xn — 2xp_1 + xp_2|| < 0 and Yy ,a, = oo,
Again, consider o, =0 and ¥, = Ygeqenllxn — 2x5_1 + Xp_2|| < oo. Utilize lemma 2,
and (25) we get, x, > x as n— o and also, we get u, »uas n— o, and v, =
vas n —» ©

Theorem 2. Consider B is g-uniformly smooth Banach space and S:B - B is a
single-valued mapping such that S is one-one, As Lipschitz continuous, s expansive
and r-strongly accretive. and ®: B - 28is § accretive set-valued mapping and P, Q :
B - C(B) are multi-valued mapping. Then the generalized resolvent operator ERS%,:
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B - B is Lipschitz continuous with constant % Let Cg’y :B—>B Dbe a generalized
Cayley approximation operator Such that CS%, is .- strongly accretive concerning S and
/1C~ - Lipschitz ~continuous. Let TS (2) =[I-S®RENIE@) . Where S[%R3,(2)] =
[S%%,]2), 2€B.

Let us consider the following postulate is satisfied

0<1-—a,+%s—any(AnApy + An,Ag, ) + 2 "\/(xgq —2qy0, + 29C,y7) <1 (26)

7\§ <2
(27)

where,y > 0 is a constant and e, a,, € [0,1] such that }7°_; en||Z, — 2Z,_1 + Zp_2]| <
(28)

and N ay = 0 0= (B~ 2", A= [Qsr+2) 1y #0.r#0, 857> 257

If all the constants are positive, Then sequence {x,}, {z,} {u,}and {v,} generated by
iterative algorithm 8 strongly convergence to the unique solution x, z, u and v of Cayley
resolvent equation problem (8).

Proof: Applying (17) of scheme-8 and Lipschitz continuity of S, We evaluate
Zns1 = Znll = || [(1 = @) 2y + an{3(S(Zn) + S(Wn)) — YN (un, v)
—yCo, W3] = [(1 = @) 2n_q + a2 (S(n-1) + S(Wn1))
—YNUn-1, V1) — YCSE,DY(Wn—O}] I
< (1= al|Zn = Znall + 2INE @) = SCa-DIl — any
[N, vn) = N1, VDI + 2|[(SWn) = SWp_1)
—2y{C3, (wn) — C3,(Wn_}|
< (= allzn = Zn-all + G2l 2 = Zn-all — any (Aw, A5,

+An, g5 ) 1120 = Zn-all + 2 (S Wp) — S(wy—y) — 2y

€3, (wn) = €3, WD} [By (25)]
< {1 — @ + @A — @y (A, Apy + AnyAgy 120 — Znoall
+ || (S(wn) — SWn_1) — 2¥{CS, (W) — €3, (W DHI - (29)

Using Lemma -1 and Lipschitz continuity of S, Strongly convergence and Lipschitz
continuity of ny associate S.we have,
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ISWn) = SWp-1) = 2¥[CE, (wy) = €2, (W]

< Sw) = S ||” = 2a¥(C2, (Wp) — €2, (Wp—1), Ny W) = SWp_1)})
+29C,y7 €2, (wn) — €2, (Wi

< A5 Mlwn — wia 19 = 2qy B llwy — w4 |17 + 29C,y1

168, (W) = €8, )|
< (A7 = 2qv0)llwy — w1 |17+ 29C,y 2. lwy, — w17
< (A" = 2qy6. + 29Cy A wy — wiq |19 (30)

If follows from (30) then we have
ISWn) = S(wWy—1) = 2¢[CE, W) — €2, (W]

q
< J(qu 26, + 29C,192.7)||Wn — wr_y]| (31)

Combining (29) and (31), We get,

1241 = Zoll < {1 — @y + FAs — any (An, Ay + AN, AGy M1 Z2n — 2|l

n 4
+ 927457 — 2078, + 296,92, llw = wi | (32)
Applying (16) of scheme 8, we have
”Wn - Wn—l” = ”{2n +en(Zn — 2n—1)} - {2n—1 + en(Zn-1 — 2n—2)}||
S Nz = Zn-all + enll2n — 221 + Zn2 | (33)

Combining (32) with (33), We have

Zn+1 = Znll < {1 = ay + A5 — any (A, Apy + AnyAgy )31 20 — Zn-all

n q A A
+ “7 \/(qu —2qy6. + zchyq/lcq){llzn — Zn_all

+en||ZAn - Zén—l + ZAn—Z”

<{l1-a,+2— any(/lNlﬂ,s:D + ANZAQQ)

qu A A
+ a? \/(/15(1 - quec + Zquyq/lcq) }” Zn — Zn—l”

n q A A A
+ a? \/(/15(1 - quec + Zquyq/lcq) en”Zn - 2Zn—l + Zn—Z”
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Thus we have,
|I2n+1 - 2n|| < 03(2)” 2n - 2n—1|| + 94(Z)en||2n - 2ZAn—1 + 211—2” (34)

n 4
Wherbs(2) = 1 — ap + A5 — any (An, Ap, + An, A5, ) + “7 \/ (27 — 2qy6. + 29C,y92.7),

0,(2) == "\/(/15" —2qy0, + 29C,y92.%) and also As? + 29C,y92. 1 > 2qy6,

2

6= S (B =2T) A=t D) Ty £ 0.0 %0, 457> 257

T r
Again, utilizing condition (28),we get Y —ia, = o and Y., enl|Z, — 22,21 + Zn_2|| <
o , Letting o, =0and 7,= Xoo1 enllZn — 22,1 + Z,_2|| < o, Then from (34) and
lemma 2 we have 2, » z € B,as n — .

Since 2, — z € B, then (34) implies that x,, > x € B, u, > u € P(x) and v, » v € Q(x).

Therefore, the sequence {x,}, {Z,}, {u,}, and { v, } represented by scheme 8 strongly
convergence to the solutions x ,z, u and v of the Cayley resolvent equation problem
(8).That is, x, » x as n - o and also we get u,, > uas n - o,v, > vas n - .

6. MATHEMATICAL EXPERIMENT

Let B=R with the usual inner product and norm, $: B > B be single-valued
mapping and ® : B » 23 be set-valued mapping such that

S(x)=2x
And D(x) = {Lx}, forall xeB

Suppose, N : B x B - B be the single-valued mappings and S,T7:B — C(B) are
multi-valued mapping such that

P(x) = {7}
and Q(x) = {3}
N(u,v) ={3+7%}
Now we have
D(P(x),P(y)) = max{supyepd(x, F(¥)), supyepd(F(x),y)}

< max{||Z = 2| [IZ =71}
< ;max{||x — y|l lly — x|}
< llx—yll

Thus P is D-Lipschitz continuous with constant 45 = , Similarly, we have to show
that lam = %
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Hence N is Lipschitz continuous in both arguments with constants Ay, = Ay, =1

and N(u,v)==Z+==2x

(i) S is r- strongly accretive and As — Lipschitz continuous.
SO -SWMx—y)=(2x-2y,x—y)
= 2llx -y’
=2 llx =yl

1

Thus, S is r = Z- strongly accretive mapping.

and [|SG) =S| = |[2x -2y

8

=2|lx — yll
< ollx —yll
Thus S is 4z = 2 -Lipschitz continuous.
(i) Dis S is accretive
D) =Dl = | Zx -~y =Sl =yl =0

That is, D is accretive and also for y =1, itis easy to verify that
[S+vD]|(B)=3
For y =1, we define a generalized resolvent operator as

R2,(0) = [S+yD] () =2x

14 14
And || RE,(x) =R, DI =l Sx -S|
14
=2l -yl
14
< lx -yl

1
< = llx —
a5 =yl

Thus the generalized resolvent operator ER?V is = = %
! r ( /14.)

(i) Calculate the generalized Cayley approximation operator
Cé?y(x) = [ZER?‘V -S| = Lx,xeB
and [|¢5), () = €5, W] = || 5 — v |

— 60

=l x =yl

Lipschitz continuous.
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647
<sellx—=yll

Tﬂ.§+2 _ 647 _

Thus the generalized Cayley approximation operator ng?y IS A, =
Lipschitz continuous.

r 210

(iv) Considering the constants calculated above, the conditions 18(A),18(B),(26) and
(27) of theorem -1 and theorem-2 are satisfied.

1
n+1

(v) Using lterative Algorithm-3 and an inertial extrapolation scheme where, e, =
and a, =,

We get, w, = x, +e,(xn— xp_1)

S(cn )+S(wn)
2

35 112
102 Xn + 2023 Wn]

and Xn+1 = (1 - an)xn + “nm?,y[ - VN(un: Un) - )/Cg?y(wn)]

Then we have, x,,; = (1 —a)x, + a, [

Let us consider the various initial values. x, = 4.0, 2.0, 1.0,—1.0,—2.0,—4.0 , Now,
using MATLAB R2024a. we get the estimation table (taken up to four decimal places)
and convergence graph and observe that the sequence x,, converges at x = 0, which is
the solution of the Cayley variational inclusion problem (1).

Estimation Table

No. of X9 =4.0 X9 =2.0 xo=1.0 xo=-1.0 xXo=-2.0 xo=—4.0
Iterations Xn Xn Xn Xn Xn Xn

1 1.7900 0.8949 0.4474 -0.4474 -0.8949 -1.7900
2 0.8009 0.4005 0.2002 -0.2002 -0.4005 -0.8009
3 0.3584 0.1792 0.0896 -0.0896 -0.1792 -0.3584
4 0.1604 0.0801 0.0400 -0.0400 -0.0801 -0.1604
5 0.0717 0.0358 0.0179 -0.0179 -0.0358 -0.0717
6 0.0321 0.0160 0.0080 -0.0080 -0.0160 -0.0321
7 0.0143 0.0071 0.0035 -0.0035 -0.0071 -0.0143
8 0.0064 0.0032 0.0016 -0.0016 -0.0032 -0.0064
9 0.0028 0.0014 0.0007 -0.0007 -0.0014 -0.0028
10 0.0012 0.0006 0.0003 -0.0003 -0.0006 -0.0012
11 0.0005 0.0002 0.0001 -0.0001 -0.0002 -0.0005
12 0.0002 0.0001 6.44e-05 -6.44e-05 -0.0001 -0.0002
15 2.311e-05 1.155e-05 | 5.777e-06 -5.777e-06 -1.15e-05 -2.31e-05
20 4.147e-07 2.073e-07 | 1.036e-07 -1.036e-07 -2.07e-07 -4.147e-07
25 7.4416e-09 | 3.720e-09 | 1.860e-09 -1.860e-09 -3.720e-09 -7.441e-09
30 2.984e-10 1.492e-10 | 7.460e-11 -7.460e-11 -1.492e-10 -2.984e-10
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Graphical Interpretation

Convergence Sequence X
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Figure: convergence sequence x,.1
CONCLUSION

This work examines the Cayley variational inclusion issue as well as its corresponding
Cayley resolvent equation problem. Both issues can be solved by employing the
resolvent operator technique, subject to specific criteria. Our paper primarily examines
the convergence analysis for both problems utilizing the inertial extrapolation scheme.
Implementing an inertial extrapolation method in both techniques of a mathematical
model proves that the convergence is relatively rapid, as indicated by the convergence
graph quickly approaching zero. One can enhance our results in spaces with a more

significant number of dimensions. Our results can be applied by engineers, physicists,
and other researchers for practical purposes.
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