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Abstract 

This article introduces a novel paradigm in quantitative data analysis by proposing an algorithm 
that integrates fuzzy set theory with the established Principal Component Analysis (PCA) 
methodology. This integration is designed to optimize and enhance the latter’s ability to capture 
and interpret complex patterns within quantitative data that may exhibit varying degrees of 
fuzziness, and imprecision in real-world datasets. Fuzzy set theory, pioneered by Zadeh in 
1965, provides a formalism for representing and manipulating uncertainty and imprecision in 
data. By incorporating this theory into the PCA algorithm, we seek to resolve the practical 
limitations posed by the deterministic nature of traditional PCA. The proposed algorithm’s 
efficacy is evaluated using a real-world dataset focused on cancer, with results systematically 
compared against those obtained through the PCA algorithm. The assessment extends to two 
additional datasets concerning cardiovascular disease and diabetes, ensuring the 
generalizability and robustness of the findings. Empirical evidence substantiates that the Fuzzy 
Principal Component Analysis algorithm surpasses the PCA algorithm in terms of efficiency and 
performance. This superiority persists even when confronted with datasets of increased 
dimensionality. This research contributes to augmenting analytics capacity for handling 
imprecise and uncertain data, and substantiating these enhancements through empirical 
validation on diverse datasets. 

Keywords: Fuzzy Set Theory, Fuzzy C-Means Clustering Algorithm, Membership Function, 
Fuzzy Principal Component Analysis. 

 
1. INTRODUCTION 

Descriptive statistics, a fundamental component in data analysis, comprises a 
suite of methodologies designed to elucidate, simplify, summarize, and organize 
complex datasets. Principal Component Analysis (PCA), a prominent technique 
among descriptive statistical methods, stands as a venerable approach established 
in 1933, persisting across diverse scientific domains due to its efficacy in 
dimensionality reduction and visualization of multidimensional datasets [1–5]. The 
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continual application of PCA underscores its enduring significance in rendering 
intricate datasets more accessible. 

Simultaneously, Fuzzy sets, introduced by Lotfi A. Zadeh, extend classical set 
notation, offering a formalized framework for representing and manipulating 
imprecise data. This extension facilitates the handling of uncertainties pervasive in 
real-life problems, making it an indispensable tool in contemporary data analysis [6, 
7]. Furthermore, in the realm of big data analysis or situations where data contains 
uncertain or ambiguous information, the incorporation of fuzzy logic becomes 
paramount. Fuzzy logic allows for a more nuanced representation of data, 
acknowledging the inherent imprecision and vagueness often present in real-world 
datasets. The ability of fuzzy sets to capture and manage uncertainties provides 
a significant advantage in scenarios where traditional binary logic may fall short. 
It enables a more flexible and adaptive approach to data analysis, accommodating 
the inherent complexities of large and diverse datasets. By embracing fuzzy 
logic, analysts can better navigate the intricacies of uncertain information, leading 
to more robust and reliable insights in the face of the inherent uncertainties that 
characterize big data environments. The application of fuzzy logic, therefore, 
emerges as a crucial strategy for enhancing the accuracy and effectiveness of data 
analysis methodologies. 

This paper delves into the integration of fuzzy set theory with Principal 
Component Analysis through Fuzzy Principal Component Analysis (FPCA) [8–
11, 13, 17]. The integration of fuzzy logic with Principal Component Analysis 
(PCA) is motivated by a desire to address the inherent limitations of PCA when 
confronted with the intricacies of modern datasets. PCA, a widely used 
technique for dimensionality reduction and feature extraction, has proven 
effective in many scenarios. However, it comes with certain drawbacks that 
become more pronounced in the context of contemporary datasets. Another 
challenge with PCA is its reliance on linear combinations of variables, which may 
not adequately capture the non-linear relationships present in many real-world 
datasets. Fuzzy logic introduces a more flexible framework that can capture non-
linear relationships and complex dependencies among variables, enhancing the 
capability of PCA to extract meaningful patterns from data that exhibit intricate 
and non-linear structures. 

To empirically substantiate the efficacy of FPCA, we present a comparative 
analysis using three real-world datasets: The Wisconsin Breast Cancer 
dataset, the Cardiovascular Disease dataset, and the Diabetes dataset. Through 
rigorous experimentation, the paper delineates the superior performance of the 
FPCA algorithm. 

The subsequent sections of the paper are organized as follows: Section 2 furnishes 
a concise overview of fuzzy sets as a generalization and extension of classical sets. 
Section 3 introduces Fuzzy Principal Component Analysis, elucidating its 
foundations in traditional PCA while incorporating principles of fuzzy logic, notably 
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the fuzzy c-means clustering algorithm. Section 4 expounds upon the advantages 
inherent in the proposed approach. Section 5 offers a detailed discussion of the 
experimental results derived from the analysis of three real-world datasets. The 
paper concludes in Section 6, summarizing key findings and delineating potential 
avenues for future research. 
 
2. NOTION OF FUZZY SETS  

The concept of the fuzzy set, introduced by Lotfi A. Zadeh in 1965, stands as a 
fundamental generalization of classical set theory. In contrast to the crisp, well-
defined boundaries of classical sets, fuzzy sets provide a more flexible and 
inclusive frame-work to represent the inherent fuzziness and imprecision found in 
many real-world situations. Zadeh’s motivation was rooted in the recognition that 
in everyday life, the distinctions between categories are often blurred, and objects 
may exhibit partial membership to multiple sets simultaneously. 

The cornerstone of the fuzzy set theory lies in the use of membership functions, 
an extension of the characteristic functions employed in classical set theory. These 
membership functions serve as a mathematical tool to describe the degree or 
strength of membership of an element in a fuzzy set. Unlike the binary nature of 
classical sets, where an element either entirely belongs or does not belong to a set, 
membership functions in fuzzy sets allow for a continuum of gradations. This 
continuum reflects the varying degrees to which an element participates or belongs 
to a fuzzy set, capturing the nuanced and gradual nature of real-world concepts. It 
illustrates the gradations in the membership of an element to a subset. Given a 
subset S of the reference set X, a fuzzy subset S is defined as the set of pairs: 

𝑆 =  {(𝑠, µ𝑆(𝑠)), 𝑠 ∈  𝑋} 

Where µS(x) ∈ [0, 1] represents the degree of membership of the element s of X in 
S. 

In the literature [6, 19], there are several types of membership functions, such as: 

• the triangular fuzzy membership function; 

• the trapezoidal fuzzy membership function; 

• the Gaussian fuzzy membership function; 

• etc. 

Fuzzy logic stands as the fundamental underpinning for the practice of fuzzy 
reasoning, providing a robust framework for drawing conclusions when faced with 
uncertainty. Its significance becomes particularly pronounced in scenarios where 
information is inherently vague or incomplete. In contrast to traditional binary logic 
which insists on a rigid true or false categorization, fuzzy logic embraces the 
inherent shades of uncertainty that are pervasive in real-world datasets. This 
flexibility allows for a more nuanced and realistic representation of the complexities 
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present in the information landscape. The adaptability of fuzzy logic is key to its 
effectiveness. By accommodating the gradations of uncertainty, it sidesteps the 
limitations of an oversimplified true/false dichotomy. This adaptability enables a 
simpler and more intuitive method for deriving conclusions from information that 
lacks absolute clarity. In the face of intricate and uncertain data, fuzzy logic 
becomes a powerful tool, facilitating more informed decision-making by providing a 
structured yet flexible approach to reasoning. Essentially, it acts as a navigational 
guide through the complexities of uncertain data, allowing for a more 
comprehensive and nuanced understanding of the information at hand. 
 
3. PRINCIPAL COMPONENT ANALYSIS VS FUZZY PRINCIPAL COMPONENT 

ANALYSIS 

3.1 Principal Component Analysis 

The factorial method, principal component analysis (PCA) [1–5], consists in 
reducing the dimension of the quantitative data space while preserving the 
maximum quantity of information. This multidimensional method was proposed 
in 1933 by Hotelling. 

The steps of PCA can be summarized as follows: 

Step 1: Data standardization; 

Step 2: Calculate of correlation matrix C; 

Step 3: Calculate of factorial axes from the C matrix; 

Step 4: Projection of data onto factorial planes; 

Step 5: Interpretation of results; 

This method is highly and extremely applicable for data description and 
redimensioning, but it requires a few improvements to make it more robust. We 
therefore propose to introduce fuzzy set theory concepts into the PCA 
algorithm. 

3.2 Fuzzy Principal Component Analysis 

FPCA [8–11, 13, 17] is a fuzzified or a fuzzy version of PCA, in which the principal 
components are extracted taking into account the degree of membership of the 
samples. In other words, FPCA is a combination of fuzzy logic and a principal 
component analysis algorithm. This logic is used in the Fuzzy C-Means (FCM) 
algorithm [12, 15, 20], which is one of the most widely used fuzzy clustering 
methods. The main objective of FCM in FPCA is to find the optimal fuzzy 
partitioning (the membership degrees), which is obtained by minimizing the 
following function: 

𝐽𝑚(𝑈, 𝑉) = ∑ ∑ (𝑢𝑎𝑏)𝑚‖𝑥𝑎 − 𝑣𝑏‖2𝑐
𝑏=1

𝑛
𝑎=1                         (1) 

Where 
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- 𝑋 = (𝑥1, 𝑥2, . . ., 𝑥n) is the dataset. 

- 𝑉 = (𝑣1, 𝑣2, . . ., 𝑣c) are the cluster centres’, 𝑣b is the 𝑏th cluster center. 

- 𝑈 = (𝑢ab)n×c is a fuzzy partition matrix, 𝑢ab ∈ [0, 1] is the membership  degree 

of data point 𝑥a to the fuzzy cluster b. 

- ‖𝑥𝑎 − 𝑣𝑏‖  is the Euclidean norm between 𝑥a and 𝑣b. 

- 𝑚 > 1 fuzziness parameter, it controls the fuzzy degree of membership of 
each data. 

3.3 Methodology of FPCA 

The implementation of FPCA on a dataset requires the following steps: 

• Before processing data, it is essential and important to understand and 
examine the data to be analyzed. 

• Data pre-processing phase which is the essential step in the overall data 
analysis 

• Process. In our case, we need two tasks: data cleaning to denoise data and 
solve or resolve the problem of missing data, and data transformation, 
including attribute or data type transformation, dataset scaling and data 
standardizing or normalization. 

• The aim of using the Fuzzy C-Means (FCM) algorithm is to extract the 
degree of 

• Membership of samples (step 1 to step 4 in the algorithm 3.4). 

• Finally, we proceed to the last step based on the Fuzzy C-Means algorithm 
(step 5 and step 6 in the algorithm 3.4). 

We summarize the main steps of the method in the figure 1: 

 

Fig 1: General steps of the FPCA method 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 12-2023 
DOI: 10.5281/zenodo.10301651 

 

Dec 2023 | 169  

3.4 Algorithmic steps for FPCA 

Firstly, we fix c the number of clusters, tolerance value ε, and choose the fuzziness 
parameter m. 

 Step 1: Initialize all membership degrees 𝑢𝑎𝑏 with random values ranging 
between 0 and 1 such that:  

∑ 𝑢𝑎𝑏 = 1,    ∀𝑎 = 1, . . . , 𝑛.𝑐
𝑏=1                                       (2) 

 Step 2: Calculate the cluster centers by the formula: 

𝑣𝑏 =
∑ 𝑢𝑎𝑏

𝑚 .𝑥𝑎
𝑛
𝑎=1

∑ 𝑢𝑎𝑏
𝑚𝑛

1=𝑎
,   𝑏 =  1,2, … , 𝑐.                                                   (3) 

 Step 3: Update the memberships matrix such they satisfy the constraint (2) by the 
formula: 

𝑢𝑎𝑏 = (∑ (
‖𝑥𝑎−𝑣𝑏‖

‖𝑥𝑎−𝑣𝑘‖
)

2

𝑚−1𝑐
𝑘=1 )

−1

, 𝑎 =  1, … , 𝑛   and   𝑏 =  1, … , 𝑐.      (4) 

 Step 4: Repeat steps 2 and 3 until the algorithm converges, i.e., the difference 
between the current and previous membership matrix is less than the 
tolerance value ε, or the number of iterations reaches a maximum value. 

 Step 5: Calculate the fuzzy covariance matrix C using the membership 
matrix determined above. 

𝐶𝑘𝑙 =
∑ (𝑥𝑎𝑘−�̅�𝑘)(𝑥𝑎𝑙−�̅�𝑙)𝑢𝑎𝑘

𝑚 𝑢𝑎𝑙
𝑚𝑛

𝑎=1

∑ 𝑢𝑎𝑘
𝑚 𝑢𝑎𝑙

𝑚𝑛
𝑎=1

.                                                       (5) 

Where  𝑢𝑎𝑘 and 𝑢𝑎𝑙 are the membership degrees of the data 𝑥k and 𝑥l, 
respectively. 

 Step 6: Determine the eigenvalues and eigenvectors of the fuzzy 
covariance matrix C as usual; these are the fuzzy principal components 
and the corresponding dispersion values. 

 
4. CONTRIBUTION OF THE PROPOSED APPROACH 

Our research pioneers a groundbreaking approach that brings a substantial 
enhancement to the conventional Principal Component Analysis (PCA) method. 
This innovation stems from the integration of fuzzy set theory, giving rise to what we 
term Fuzzy Principal Component Analysis. In outlining the key contributions of our 
approach, we unveil a methodology that surpasses the limitations of traditional PCA 
and offers a more refined and adaptable framework for data analysis. The synergy 
of fuzzy set theory and PCA introduces a novel perspective, allowing for a more 
nuanced representation of data, particularly in scenarios where uncertainties and 
imprecisions are prevalent. Through this integration, we aim to provide a robust and 
effective tool that advances the capabilities of PCA, fostering a deeper 
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understanding of complex datasets and opening new avenues for insightful 
analysis. The key contributions of our approach are outlined below: 

4.1 Robust Dimensionality Reduction 

PCA has long been a powerful tool for dimensionality reduction, allowing 
researchers to explore complex datasets while retaining crucial information. 
However, our Fuzzy Principal Component Analysis takes this a step further by 
incorporating fuzzy set theory, providing a nuanced understanding of data 
imprecision and uncertainty.  

By considering the degree of membership of samples, FPCA ensures a more robust 
dimensionality reduction, preserving essential information even in the presence of 
fuzzy and imprecise data. 

4.2 Overcoming Practical Limitations 

Traditional PCA methods, while effective, exhibit limitations such as data loss and 
poor linear combinations. FPCA, by leveraging fuzzy logic and the Fuzzy C-Means 
(FCM) algorithm, overcomes these practical challenges. The incorporation of fuzzy 
clustering allows for a more adaptive and nuanced analysis, leading to improved 
accuracy and performance, especially when confronted with datasets of increased 
dimensionality. 

4.3 Versatility in Handling Diverse Datasets 

In an era of exponential growth in data availability, our approach recognizes the 
need for flexible methodologies that can handle diverse datasets. The fusion of 
statistical methods with fuzzy set theory provides an adaptable framework capable 
of addressing the uncertainty rates associated with modern datasets.  

The empirical validation con- ducted on real-world datasets related to cancer, 
cardiovascular disease, and diabetes demonstrates the adaptability and robustness 
of Fuzzy Principal Component Analysis across various domains. 

4.4 Advancements in Analytical Capacity 

By augmenting PCA with fuzzy set theory, our research contributes to advancing 
analytical capacity in handling imprecise and uncertain data. The proposed FPCA 
algorithm showcases superior efficiency and performance compared to traditional 
PCA, making it a valuable tool for researchers and practitioners seeking enhanced 
insights from their datasets. 

To sum up, our approach presents a significant step forward in the field of 
quantitative data analysis, offering a more sophisticated and adaptable method for 
capturing and interpreting complex patterns within real-world datasets. The 
empirical evidence substantiates the efficacy of Fuzzy Principal Component 
Analysis, reinforcing its potential as a valuable addition to the analytical vision in 
diverse fields. 
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5. RESULTS AND DISCUSSION 

To illustrate the performance of FPCA described above, we use the Breast Cancer 
Wisconsin dataset 2 [14, 21–23]: 

The Breast Cancer Wisconsin (Diagnostic) dataset from UCI machine learning 
repository, contains features extracted from the digitized image of a fine needle 
aspiration of a breast mass. They are used for extracting features from the cell 
nuclei present in the digitized images [14, 23]. Here is an example of a digitized 
image (figure 2) (colored parts correspond to cell nuclei). 

 

Fig 2: Pictures captured from glass layers with breast mass smears 
obtained by the Fine Needle Aspirate (FNA) 

This dataset contains 30 variables (features), 569 individuals (images) and two 
classes: Malignant (212 samples) and Benign (357 samples) signifying if a patient 
has breast cancer or not. Ten features are calculated for each nuclei (the size, the 
shape and the texture), and three values are determined for each feature: the mean 
value, the largest (or worst) value and the standard error [23]. 

a) Radius (mean of distances from center to points on perimeter) 

b) Texture (standard deviation of grayscale values) 

c) Perimeter 

d) Area 

e) Smoothness (local variation in radius length) 

f) Compactness (perimeter / area - 1.0) 

g) Concavity (severity of concave parts of contour) 

h) Concave points (number of concave portions of contour) 

i) Symmetry 

j) Fractal dimension (” coastline approximation” - 1) 
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The objective is to visualize the two classes of cells (malignant and benign), but as 
these cells are characterized by 30 variables this visualization becomes very 
difficult (high dimension), so we use the multidimensional data analysis methods 
PCA and FPCA to reduce the dimension and to construct factorial plans where we 
can separate the two classes of cells. 

The results obtained by applying the PCA and FPCA are presented in the tables 1 
and 2. 

Table 1: The first seven eigenvalues and their proportion for PCA 

PCA 

Component Eigenvalue Variability (%) Cumulative variability (%) 

Dim1 13.28 44.27 44.27 

Dim2 5.69 18.97 63.24 

Dim3 2.81 9.39 72.63 

Dim4 1.98 6.60 79.23 

Dim5 1.64 5.49 84.72 

Dim6 1.20 4.02 88.74 

Dim7 0.67 2.25 90.99 

Table 2: The first seven eigenvalues and their proportion for FPCA 

FPCA 

Component Eigenvalue Variability (%) Cumulative variability (%) 

Dim1 26.75 89.19 89.19 

Dim2 2.35 7.84 97.03 

Dim3 0.83 2.78 99.81 

Dim4 0.05 0.17 99.98 

Dim5 1.36×10−3 4.53×10-3 99.99 

Dim6 1.09×10−5 3.65×10−5 99.99 

Dim7 5.95×10−8 1.98×10−7 99.99 

According to table 1, we notice that when we apply classical PCA to the dataset, 
five principal components (Dim1 - Dim5) are found to describe almost and only 
84.72 % of the total variance of the dataset. In other words, the cumulative 
proportion of the first five components is 84.72% and the proportion of information 
lost is 15%. 

However, for FPCA, only two axes are used to present 97.03% of information (table 
2). As a result, the components derived from FPCA explain a much greater 
proportion of the variance through just two axes than their conventional PCA 
counterparts. 

The number of components required to present and visualize this data set for each 
method is therefore clear. 

The PCA load diagram or the loadings scatter plot allows us to visualize the 
contribution of the original data to the principal components. 
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Principal components are linear combinations of the original variables, constructed 
to maximize the variance of the data. 

In this case, principal components are constructed from the characteristics of the 
cells (radius, texture, perimeter, area, smoothness, compactness, concavity, 
concave points, symmetry and fractal dimension for the three values: the mean 
value, the largest (or worst) value and the standard error) in each image. 

 

Fig 3: Scatter plot of loadings corresponding to the first two principal 
components (FPCA) 

In the case of FPCA, the two classes are well presented on the first factorial plane 
in the score graph (figure 3) i.e., we can easily separate cancerous cells from non- 
cancerous cells by the first axis (Dim1).  

Moreover, the two classes are homogeneous. So we can deduce that we need only 
one plan to present almost all information when applying FPCA.  

In addition, the percentage of information lost is only 2.97% which means that this 
plan presents 97.03% of the information (we can mention that most of the variables 
contribute to the construction of the first two principal components). 
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Fig 4: Scatter plot of loadings corresponding to the PCA (Dim1-Dim2 and 
Dim1-Dim3 factorial planes) 

Contrary to the PCA, as we see in figures (4, 5, 6, 7 and 8) we need 10 graphics to 
visualize only 84.72 % of the information and this result is not satisfactory (for 
example the first factorial plane presents only 63.24% of the total information). 

We remark also for PCA that in the first four planes, we can easily separate the two 
classes even though they are dispersed, but internally (figures 4 and 5). 

 

Fig 5: Scatter plot of loadings corresponding to the PCA (Dim1-Dim4 and 
Dim1-Dim5 factorial planes) 
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Fig 6: Scatter plot of loadings corresponding to the PCA (Dim2-Dim3 and 
Dim2-Dim4 factorial planes) 

 

Fig 7: Scatter plot of loadings corresponding to the PCA (Dim2-Dim5 and 
Dim3-Dim4 factorial planes) 

 

Fig 8: Scatter plot of loadings corresponding to the PCA (Dim3-Dim5 and 
Dim4-Dim5 factorial planes) 
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In the cases of figures 6, 7 and 8, it is hard and difficult or even impossible, to 
separate the two classes by eye. This is a poor representation of the data, as the 
two classes cannot be clearly visualized. 

It should also be noted that all the data are concentrated on the origin, and the 
amount of information explained and represented is lower on the factorial planes: 
Dim2-Dim3 (8.5% of the information), Dim2-Dim4 (7.67% of the information), Dim2- 
Dim5 (7.33% of the information), Dim3-Dim4 (4.79% of the information), Dim3-Dim5 
(4.45% of the information) and Dim4-Dim5 (3.62% of the information). 

After analyzing the ten PCA graphs (for the load scatter plot and the correlation 
circle), we can see that all the information described therein can only be extracted 
from a single FPCA graph. So the performance and usefulness of the FPCA 
method for the visual synthesis of real data sets is clearly visible, as the analysis of 
the previous example shows. 

To ensure and guarantee this result, we apply this algorithm to other real datasets. 

For example, cardiovascular disease dataset and diabetes dataset. 

1) Application of FPCA and PCA to cardiovascular disease dataset 

We use the heart disease dataset created by the Cleveland, Hungary, Switzerland 
and VA Long Beach Institutes. It contains patient data, including characteristics that 
identify the presence of heart disease. 

These data contain 15 variables (disease characteristics) from 500 patients 
(individuals). 

The primary aim is to visualize two classes. The classes refer to a person’s 
situation: does he/she suffer from cardiovascular disease or not (presence or 
absence of cardiovascular disease). 

The tables 4 and 3 show the results obtained by applying FPCA and PCA. 

Table 3: The first eight eigenvalues and their proportion for PCA 

PCA 

Component Eigenvalue Variability (%) Cumulative variability (%) 

Dim1 2.95 19.67 19.67 

Dim2 2.07 13.84 33.51 

Dim3 1.76 11.74 45.25 

Dim4 1.43 9.57 54.82 

Dim5 1.27 8.49 63.31 

Dim6 1.09 7.28 70.59 

Dim7 0.97 6.50 77.09 

Dim8 0.92 6.17 83.26 

According to table 3 and table 4, we notice that when we apply classical PCA to the 
dataset, we find that the cumulative proportion of the first eight compo- nents is 
83.26%. In other words, eight principal components (Dim1 - Dim8) are found (table 
3) to describe only 83.26% of the information. 
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Table 4: The first eight eigenvalues and their proportion for FPCA 

FPCA 

Component Eigenvalue Variability (%) Cumulative variability (%) 

Dim1 14.71 98.13 98.13 

Dim2 0.28 1.86 99.99 

Dim3 5.39×10−16 3.59×10−15 99.99 

Dim4 2.40×10−16 1.60×10−15 99.99 

Dim5 1.79×10−16 1.19×10−15 99.99 

Dim6 1.51×10−16 1.01×10−15 99.99 

Dim7 1.21×10−16 8.11×10−16 99.99 

Dim8 2.98×10−17 1.99×10−17 99.99 

To analyze this amount of information, 28 factorial planes are required, which 
makes it very difficult and hard to interpret the results obtained. 

For the FPCA, two factorial axes are sufficient to present almost all the information 
in the data table (99.99%). So, to interpret and visualize the analysis results, we 
simply need to use the first factorial plane. 

2) Application of FPCA and PCA to diabetes dataset 

The diabetes dataset comes from the National Institute of Diabetes and Digestive 
and Kidney Diseases. 

768 women (individuals) aged at least 21, of Pima Indian origin, were tested for the 
disease diabetes. The presence of this disease was linked to 8 characteristics 
(variables) present in this dataset. 

Even for this example, there are two classes of observations (presence or absence 
of diabetic disease): 

The results obtained by applying the FPCA and PCA are presented in the tables 5 
and 6. 

Table 5:  The first six eigenvalues and their proportion for PCA 

PCA 

Component Eigenvalue Variability (%) Cumulative variability (%) 

Dim1 2.09 26.17 26.17 

Dim2 1.73 21.64 47.81 

Dim3 1.02 12.87 60.69 

Dim4 0.87 10.94 71.63 

Dim5 0.76 9.52 81.16 

Dim6 0.68 8.53 89.69 

According to table 5 and table 6, we can see that even for this example, only one 
factorial plane is needed to interpret 99.97% of the information for FPCA. However, 
for PCA, we need ten factorial planes to interpret just 81.16% of the information. 
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Table 6: The first six eigenvalues and their proportion for FPCA 

FPCA 

Component Eigenvalue Variability (%) Cumulative variability (%) 

Dim1 7.01 87.66 87.66 

Dim2 0.98 12.3 99.97 

Dim3 1.95×10−3 2.44×10−2 99.99 

Dim4 7.53×10−5 9.42×10−4 99.99 

Dim5 4.62×10−7 5.77×10−6 99.99 

Dim6 1.49×10−10 1.84×10−9 99.99 

In conclusion, we can see that FPCA always outperforms PCA, even when the 
number of variables in the data space is reduced (for example 1: 30 variables, for 
example 2: 15 variables and for example 3: 8 variables). 
 
6. CONCLUSION 

PCA is a method for the descriptive analysis of multidimensional data. It consists 
and used to minimizing the dimension of the data space in order to visualize them 
on factorial planes, but as the number of planes increases the interpretation of the 
results becomes more delicate, and this is an inconvenience of the PCA method. 

We have proposed to introduce the fuzzy c-means algorithm to the PCA algorithm 
to achieve a more reduced and realistic analysis. 

We applied FPCA and PCA to three different datasets in order to demonstrate the 
performance of the FPCA algorithm compared with the PCA algorithm. 

Firstly, we considered the Wisconsin breast cancer dataset to show the 
performance of the FPCA algorithm versus the PCA algorithm. We found that the 
FPCA algorithm represents more than 95% of the information on a single factorial 
plane, whereas the PCA algorithm represents almost the same information on ten 
factorial planes. 

Secondly, we used the cardiovascular disease dataset, and found that the FPCA 
algorithm represents than 99% of the information on a first factorial plane, whereas 
the PCA algorithm represents almost the same information on more than 28 
factorial planes. 

Thirdly, we tried the diabetes dataset, and again found that the FPCA algorithm rep- 
resents over 99% of the information on a first factorial plane. As opposed to the 
PCA method, which requires ten factorial designs to present just 81 % of 
information. 

We always find that the FPCA method outperforms the PCA method. This ensures 
the effect of fuzzy set theory in PCA. 
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