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Abstract 

It is well-known that the selection criteria make it possible to determine the order of a statistical 
model associated with the observed data. But in practice, the problem of missing values requires a 
modification of these criteria. For Akaike Information criterion, this problem of incomplete data was 
studied by Cavanaugh and Shumway (1998), they demonstrated an extension of Akaike’s cri terion 
to take account of missing values. But this criterion does not always lead to correct model selection. 
In this paper, we propose a new information criterion of Schwarz. This criterion is based on the 
motivation provided for the posterior probability of the candidate model and the EM algorithm. We 
have validated the theoretical results on simulated data. The new criterion converges to the correct 
order of the candidate model for both small and large samples, even if the percentage of missing 
data increases. 

Keywords: Incomplete Data, Model Selection, Information Criteria, a Posterior Probability, Em 
Algorithm. 

 
1. INTRODUCTION 

Suppose we have a statistical structure (Ω, Pθ, θ  Θ) where Pθ is a probability 
absolutely continuous about a measurement of Lebesgue and Θ a convex set of 

unknown dimension ko, then we have a family of probability densities f (.|θ) such as for  

θ  Θ: 

𝑓(. |𝜃) =
𝑑𝑃𝜃

𝑑𝑥
 

Let us consider also a sequence of parameterized models M1, M2... ML associated with 
a sample of data Y. Assuming that each Mk is uniquely parametrized by a vector θk, 
presumed to lie in a parameter space Θ. Our objective is to estimate the dimension ko of 
the vector parameter called order of the model when the sample Y contains the missing 
value. Indeed, according to the nature of the problem to study, the observed data can 
be incomplete. This situation is met, for example, in the study of the production of a 
company, or in genetics where the problem of the missing values is due to the 
autofecondation which is sometimes impossible to observe. The problem of model 
selection is widely resolved by information criteria.  
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In the complete data, the general form of these criteria is written: 

𝐼𝐶(𝑘) = −2𝑙𝑛𝑓(𝑌|𝜃𝑛
𝑘) + 𝑘𝐶𝑛   

 𝑘̂ = argmin
1≤𝑘≤𝐿

𝐼𝐶(𝑘) 

n is the sample size of Y, 𝜃 𝑛
𝑘  denotes the estimator of θk obtained by maximizing the 

likelihood and Cn a factor of penalization allowing to attenuate the entropic 
over−parameterization of the model related to a criterion based on log− likelihood. For 
Cn = 2, we obtain the criterion of Akaike noted AIC, which is one of the most popular 
and effective criterion used for model selection but it does not always end in a 
satisfactory estimate.  

It implies a strict over−parametrization of the order [Shibata, [10]]. For Cn = ln (n), we 
obtain the criterion of Schwarz which provides a consistent estimator of the order. Let 
us suppose that Y is an incomplete data in its general form; it implies the existence of 
two sample spaces Yobs the actual values and Ymis the missing part. In selecting models 
from data Y, Cavanaugh and Shumway [5] used the criterion of Shimodaira noted PDIO 
(”Predictive Divergence for Incomplete Observation Models”) [11] and EM algorithm to 
derive a modified criterion of Akaike, noted AICcd (’cd’ indicate ’complete data’). 
Although, it takes the incomplete aspect of the data into account, this criterion remains 
nonconvergent according to the results of simulation presented in the last part of this 
paper.  

We propose to use the EM algorithm and the posterior probability of the candidate 
model Mk to derive a new criterion of the type SIC noted SICcd characterized by a 
significant penalization of the entropy of the missing values and log−likelihood of the 
actual values, and allowing improvement of the criterion AICcd. 

Finally we compare the criteria AICcd, AIC, SIC and SICcd thanks to a study of a 
simulated causal autoregressive model. We check in particular the new criterion leads 
to a correct estimation of the order of small ones and large samples as well as that for a 
significant number of missing data, thus validing the improvement of criterion AICcd. 
 
2. STUDY OF THE INCOMPLETE DATA Y 

Now, we suppose that a given incomplete sample Y where the observations are re- 
ordered, we note Y= (Yobs, Ymis) where Yobs and Ymis are respectively the parts observed 
and missing from Y. 

2.1 The Expectation − Maximization (EM) Algorithm 

The EM algorithm was proposed in (1976) by Dempster Laird Rubin [6]. It is an iterative 
application to estimate the parameters. It optimizes the probability of a statistical model 
M on the condition of using a class of distributions often associated to the exponential 
family.  
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We denote as Q the parametric function to optimize defined by: 

𝑄(𝜃|𝜃′) = ∫ 𝑙𝑛𝑓(𝑌|(𝑀, 𝜃))𝑓(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠, (𝑀, 𝜃′))𝑑𝑌𝑚𝑖𝑠   

Where f (Ymis|Yobs, (M, θ)) denotes the parametric density function conditioned to an 

observed data. The EM algorithm is reiterated in two steps: initially, we calculate the 

density f (Ymis|Yobs, (M, θ)) and after, we update the parameter estimated by computing 

a standard Maximum Likelihood according to the observed data.  

These two steps represent only one iteration. At the end of each iteration, the θ optimal 

ones are substituted from the θ by indexing the θ and θ according to the various 

iterations; we obtain the mechanism 𝜃′̂𝑘 →  𝜃𝑘+1. 

The function 𝑄 guarantees growth of the function probability and the checking of the 
conditions of regularity, and consequently the function: 

𝑉𝑛(𝜃𝑘) = −
1

𝑛
ln 𝑓(𝑌|(𝑀𝑘, 𝜃𝑘)) 

Has first- and second-order derivatives which are continuous over Ɵ, admits a global 

minimum 𝜃𝑛
𝑘 which belongs to Ɵ and almost surely converges and uniformly in 𝜃𝑘 to a 

function 𝑊(𝜃𝑘) which is in turn has first- and second-order derivatives and has a unique 

global minimum at 𝜃∗
𝑘 ∈ Ɵ such as 𝑉𝑛

"(𝜃𝑘) →  𝑊"(𝜃𝑘) almost surely and uniformly in 𝜃𝑘 ∈

Ɵ as 𝑛 → +∞. Note that the preceding conditions imply that  𝜃𝑛
𝑘 converge almost surley 

to 𝜃∗
𝑘 as 𝑛 →  +∞.  We use in after the 𝑉𝑛   function to build the modified Schwarz 

Criterion.  

2.2  Schwarz Information Criterion for the incomplete data 

2.2.1 Lemma 

Consider two sequences of positive random variables (𝑇𝑛) and (𝑈𝑛) and a convergent 
positive sequence (𝛼𝑛) defined as [𝑈𝑛 > 𝛼𝑛] implies[𝑇𝑛 > 𝑈𝑛]. Suppose there are two 

postive constants 𝛾 and 𝜖 such as: 

𝑃[(𝑇𝑛 − 𝛼𝑛) ≥ 𝛾] ≥ 𝜖      ∀𝑛 

Then 

∃𝑁, ∀𝑛 > 𝑁, ∀𝛿 > 0                  ln 𝐸(𝑇𝑛
ln(𝑛)

) − ln 𝐸(𝑈𝑛
ln(𝑛)

) > −𝛿. 

2.2.2 Proposition 2 

Let (𝑀𝑘) a sequence of models such that 𝑀𝑘 describes the incomplete data. Let  

𝑓(. |(𝑀𝑘, 𝜃𝑘)) And ℎ(𝑌) respectively the density of probability and the marginal density 

of 𝑌 . For each model candidate𝑀𝑘, we associate the posterior probability 𝑃(𝑀𝑘|𝑌)and 
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the prior probability𝑃(𝑀𝑘). We consider 𝜃𝑛
𝑘 the estimator of 𝜃𝑘 obtained by maximizing 

the likelihood. We suppose that   𝜃𝑛
𝑘   →  𝜃∗

𝑘 almost surely.  

We define 𝐸𝑌 the expected value with respect to the density 𝑓(𝑌|(𝑀𝑘, 𝜃∗
𝑘))  and let: 

𝐼𝑜𝑐(𝜃|𝑌𝑜𝑏𝑠)=𝐸𝑌𝑚𝑖𝑠
(−

𝜕2 ln 𝑓(𝑌|𝜃)

𝜕𝜃𝜕𝜃′
) 

𝐼𝑜(𝜃|𝑌𝑜𝑏𝑠) = − (−
𝜕2 𝑙𝑛 𝑓(𝑌𝑜𝑏𝑠|𝜃)

𝜕𝜃𝜕𝜃′
) 

Then, there exist 𝑛𝑜 ∈ 𝐼𝑁 such that for 𝑛 > 𝑛𝑜, we have the following inequality :  

−
2

𝑛
ln 𝑃(𝑀𝑘|𝑌)

≤  
2

𝑛
ln ℎ(𝑌) −

2

𝑛
ln 𝑃(𝑀𝑘) − 2𝑄(𝜃𝑛

𝑘|𝜃𝑛
𝑘)

+ ln(𝑛)𝑡𝑟𝑎𝑐𝑒{𝐼𝑜𝑐(𝜃𝑛
𝑘|𝑌𝑜𝑏𝑠)𝐼𝑜

−1(𝜃𝑛
𝑘|𝑌𝑜𝑏𝑠)} 

2.2.3 The Modified Schwarz Criterion 

The dimension 𝑘𝑜 of the fitted model obtained by maximizing the posterior 

probability𝑃(𝑀𝑘|𝑌). We base on the derivation of the new criterion on the majorant of 

−
2

𝑛
ln 𝑃(𝑀𝑘|𝑌) represented in the proposition 2.  

If we consider only terms which depend on 𝑘, the estimator 𝑘̂ of the unkown order 𝑘𝑜 is 
obtained with the minimum of the following quantity: 

−
2

𝑛
ln 𝑃(𝑀𝑘) − 2𝑄(𝜃𝑛

𝑘|𝜃𝑛
𝑘) + ln(𝑛)𝑡𝑟𝑎𝑐𝑒{𝐼𝑜𝑐(𝜃𝑛

𝑘|𝑌𝑜𝑏𝑠)𝐼𝑜
−1(𝜃𝑛

𝑘|𝑌𝑜𝑏𝑠)}             (1.1) 

In this expression, we can eliminate the prior probability P (Mk) because when the 

integer k is lower or equal to the maximum order L, we consider 𝑃(𝑀𝑘) =
1

𝐿
 

If k  IN *, the choice of P (Mk) corresponds to the coding of integers. For example, 

since the optimal coding defined by Rissanen[12,13], we can write:𝑃(𝑀𝑘) =
1

𝑐
2−𝑙𝑜𝑔∗𝑘 

Where log*k = log2k + log2log2k + ... and c is the constant of normalization such as: 

1

𝐶
∑ 2−𝑙𝑜𝑔∗𝑘∞

𝑘=1 = 1    (c ≈ 2.865064) 

In the continuation, we suppose that 1 ≤ k ≤ L thus𝑃(𝑀𝑘) =
1

𝐿
.  Using (1.1) we propose 

the following criterion which we note SICcd: 

𝑆𝐼𝐶𝑐𝑑(𝑘) = −2𝑄(𝜃𝑛
𝑘|𝜃𝑛

𝑘) + ln(𝑛) 𝑡𝑟𝑎𝑐𝑒{𝐼𝑜𝑐(𝜃𝑛
𝑘|𝑌𝑜𝑏𝑠)𝐼𝑜

−1(𝜃𝑛
𝑘|𝑌𝑜𝑏𝑠)} 

𝑘̂ = argmin
1≤𝑘≤𝐿

𝑆𝐼𝐶𝑐𝑑(𝑘) 

 
 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 12-2023 
DOI: 10.5281/zenodo.10301478 

 

Dec 2023 | 160  

3. SIMULATION STUDIES 

In order to validate the theoretical results, we consider an autoregressive processes Yt 
of order 3. We suppose that Yt is causal and we take 

Yt + 0.653 * Yt−1 − 0.064 * Yt−2 − 0.227 * Yt−3 = t 

Where t is the white noise with mean 0 and variance σ2. 

By the Software analyzer Splus we generate 500 samples of size n when we vary the 
values of size and variance in {50, 200} and {1, 2} respectively. We construct then the 
incomplete data by eliminating the observations of each sample, this operation is 
according to a discard probability Pmis; we denote that Pmis is the probability to remove 
some observations is set at 0.2, 0.33 and 0.4. 

For each of the 500 incomplete data in a set, all parameter models in the candidate 
class are fit to the data using the EM algorithm. We calculate the order of models by the 
selection criteria SIC, AIC, AICcd and SICcd. We consider in this calculation the orders 1, 
2, 3, 4 and 5.  

We presented in four tables 1, 2, 3 and 4 the numerical results of criteria depending on 
the size of samples and the values of the variance. 

We choose the variance σ2 = 1 for the tables 1 and 2 and we present the results for the 
variance σ2 = 2 in tables 3 and 4. 

Table 1: Frequencies (%) of estimated orders, n = 200 and σ2 = 1 

Pmis ORDER 
CRITERIA 

AIC SIC AICcd SICcd 

 1 00 2 00 2 

 2 2.67 6 2.67 6 

0 3 78.66 91.33 78.66 91.33 

 4 14 0.67 14 0.67 

 5 4.67 00 4.67 00 

 1 00 2.66 00 2.70 

 2 4 12.67 6.67 13.30 

0.2 3 58.77 66 58.77 78.67 

 4 24 12 24 5.33 

 5 13.23 6.67 10.56 00 

 1 00 2 00 2 

 2 4 13.33 3.33 10.17 

0.33 3 42.67 56.67 42.67 73.83 

 4 24.67 18.67 28 4.97 

 5 28.66 9.33 26 9.03 

 1 5.33 15.22 1.46 10 

 2 4 17.33 4 14.67 

0.4 3 26 32.67 23.34 49.36 

 4 30 23.34 36 19.30 

 5 34.67 11.44 35.20 6.67 
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Table 2: Frequencies (%) of selected orders, n = 50 and σ2 = 1 

Pmis ORDER 
CRITERIA 

AIC SIC AICcd SICcd 

 1 21 28 21 28 

 2 10 14.67 10 14.67 

0 3 39 54 39 54 

 4 18 1.33 18 1.33 

 5 12 2 12 2 

 1 24 24 33 21.33 

 2 10.67 14.67 12.33 12.67 

0.2 3 29.33 36.67 32.67 44.67 

 4 16 8.66 10 18.67 

 5 20 16 12 2.66 

 1 8.99 14 5 18 

 2 9.01 26 12 26 

0.33       3 26.64 30 27.66 36 

 4 32 25.33 26.67 17.30 

 5 23.36 4.67 28.67 2.70 

 1 2 20 3.03 21.10 

 2 12.87 13.33 11.22 17 

0.4 3 16.60 20.67 14.78 26 

 4 11.13 12 12 13 

 5 57.40 34 58.97 22.90 

Table 3: Frequencies (%) of selected dimensions, n = 200 and σ2 = 2 

Pmis ORDER 
CRITERIA 

AIC SIC AICcd SICcd 

 1 2 3.34 2 3.34 

 2 1.23 10 1.23 10 

0 3 66.77 83.33 66.77 83.33 

 4 22.54 3.33 22.54 3.33 

 5 7.46 00 7.46 00 

 1 00 7.30 3.30 8 

 2 15.33 24 11.36 14 

0.2 3 48 56 54.37 76 

 4 26 6.70 24.97 2 

 5 10.67 6 6 00 

 1 00 6.67 00 9.66 

 2 7.53 12.67 10.67 13.33 

0.33 3 35.13 49.35 45.33 66.67 

 4 26 19.31 20 3.67 

 5 31.34 12 24 6.67 

 1 7.33 18 4.64 12 

 2 8 12 9.33 16.67 

0.4 3 21.33 32 18 44 

 4 30 28 39.36 20 

 5 33.34 10 28.67 7.33 
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Table 4: Frequencies (%) of selected orders, n = 50 and σ2 = 2 

Pmis ORDER 
CRITERIA 

AIC SIC AICcd SICcd 

 1 18.67 22 18.67 22 

 2 14.67 15.34 14.67 15.34 

0 3 49.33 58 49.33 58 

 4 10 00 10 00 

 5 7.33 4.66 7.33 4.66 

 1 7.33 30 10 25.53 

 2 20 17.31 16 18 

0.2 3 24 42.70 27.33 44.47 

 4 20.67 6.69 24 8 

 5 28 3.30 22.67 4 

 1 4.87 14 2 16.88 

 2 13.53 14.67 10 11.12 

0.33 3 19.13 34 22.67 38 

 4 18.47 20 21.33 12 

 5 44 17.33 44 22 

 1 6.67 12.97 8 10 

 2 0.57 5.03 4 20.67 

0.4 3 19.33 28 16 32.60 

 4 18.67 20 12.77 20.73 

 5 54.76 34 59.23 16 

In analyzing the results described in each of the four tables, we observe, generally, that 
the frequency of selection of the exact order ko = 3(”good selection”) is a decreasing 
function in relation to the probability Pmis and the variance σ2 of the white noise. We also 
observe that; the frequency of ”good selection” by the criterion SICcd is always superior 
to the one of the criteria AIC, SIC and AICcd, this result is independent to the size of the 
sample and the variance of the white noise. 

The criterion SICcd is more performant than the other criteria; the frequency of ”good 
selection” of the order obtained through the criteria AIC and AICcd for 20% is similar to 
the one of SICcd with 40% of missing data when σ2 = 2. Let’s note otherwise that the 
decrease of the ”good selection” frequency by the criteria AIC, SIC and AICcd is faster 
than the one of criteria SICcd. 
 
4. CONCLUSION 

We have shown that the Schwarz criterion SIC, which is convergent for complete data, 
does not allow a correct estimation of the order when we have a meaningful number of 
missing data in the sample. We also verified by simulation that; the new criterion SICcd 

is stronger than criteria AIC, SIC and AICcd since the frequency of selection of the exact 
order by this new criterion is systematically superior to the one of selection obtained 
through the criterion AICcd proposed by Cavanaugh and Shumway [5] and generally 
with the classic criteria. The modified criterion of Schwarz SICcd presents therefore a 
particular interest in relation to the criteria information when we have the incomplete 
data. 
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