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Abstract 

In the contemporary landscape of machine learning, medical image analysis has experienced monumental 
leaps forward. Spearheading this progression are cutting-edge clustering and segmentation methods 
having reshaping our analytical capabilities. This piece delves into the prowess of the Fuzzy C-Means 
(FCM) clustering technique: a machine learning-centric strategy. By scrutinizing five diverse case studies, 
we unravel the tangible benefits and the expansive potential of FCM. To ensure a comprehensive view, we 
also navigate through other prominent image segmentation methodologies, including Thresholding, 
Watershed, and K-means clustering. To evaluate the resultant images from these methods, we have 
adeptly employed the fuzzy inference system (FIS). Our analytical juxtaposition underscores FCM’s 
distinctive edge over other techniques, demonstrating its finesse in producing intricate and superior 
outcomes. Reinforcing the marriage of advanced technology with in-depth research, all our examinations 
and simulations were seamlessly executed by utilizing MATLAB’s robust arsenal. 

Keywords: Machine Learning, K-means Clustering, Fuzzy C-Means Clustering, Image Processing, 
Medical Image Segmentation.  

 
1. INTRODUCTION 

Over the past few decades, the realm of medical imaging has experienced a monumental 
metamorphosis. As we find ourselves in an era where precision and accuracy are 
paramount, the segmentation of these images emerges as a linchpin in ensuring 
impeccable diagnosis and enhancing patient care. The proliferation of technological 
advancements, especially in the age of machine learning, has bequeathed the medical 
fraternity with a plethora of techniques dedicated to image segmentation. The rich 
tapestry of literature in this domain is a testament to the relentless efforts of researchers 
and professionals aiming to refine these techniques for optimal outcomes. This article 
endeavours not only to traverse the expanse of these advancements but also to shed 
light on their intricate nuances and potential implications in the ever-evolving landscape 
of medical imaging. 
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In the earlier stages, fuzzy technology found its relevance in healthcare and medicine 
(Abbod et al., 2001). This utility was further extended to the realms of fuzzy image 
processing schemes (Chacon et al., 2002) and its robust implementation in medical 
image segmentation, as demonstrated by Chuang et al. (2006). The evolution of fuzzy 
clustering for image segmentation has been meticulously studied by Naz et al. (2010) and 
corroborated by numerous others including Chaira (2011), Mohammed & Al-Ani (2020), 
Xu et al. (2021), and Dhal et al. (2023). The confluence of various algorithms has been 
explored in recent years, such as the integration of the watershed transform with fuzzy c-
means clustering by Saikumar et al. (2012) and Bahadure et al. (2016). Anter & 
Hassenian (2019) took this a step further by incorporating neutrosophic sets in CT liver 
tumor segmentation. The convolutional neural network's efficacy in medical X-ray image 
segmentation has been presented by Bullock et al. (2019). Furthermore, the utility of 
MATLAB for image segmentation has been discussed by Abdulrahman & Varol (2020) 
and Ijemaru et al. (2021). Kumar et al. (2020) highlighted the significance of semi-
supervised OTSU in dental radiograph segmentation. 

In the last decade, there has been a shift towards intuitionistic methods, such as the one 
proposed by Chowdhary et al. (2020), and multiple thresholding techniques, as reviewed 
by Pare et al. (2020). Ramesh et al. (2021) offers a holistic review of medical image 
segmentation algorithms, and other reviews have delved into the nuances of various 
segmentation techniques (Kheradmandi & Mehranfar, 2022; Sarma & Gupta, 2021; 
Wala’a & Rana, 2021; Salpea et al., 2022; Csurka et al., 2022; Wang et al., 2022; Grewal 
et al., 2023; Yu et al., 2023).  

Modern advancements in segmentation techniques like the spatial context model in fuzzy 
c-means clustering have been put forth by Xu et al. (2021). Meanwhile, Kaur et al. (2022) 
have demonstrated the integration of the watershed segmentation technique in detecting 
breast cancer masses in mammograms. Jardim et al. (2022) provide insights into the 
application of k-means clustering in graphical image region extraction. Recently, meta-
heuristic optimization algorithms have shown promise in multilevel thresholding image 
segmentation, as evidenced by Abualigah et al. (2023). Nawaz et al. (2023) provided an 
innovative approach by combining fast fuzzy C-mean clustering-based maps for object 
detection and segmentation. Moussaoui et al. (2023) offer a compelling technique for 
brain tumour detection using Birch and Marker Watershed. 

With such a rich tapestry of methodologies and approaches spanning over two decades, 
this article aims to weave a narrative around the advancements, applications, and future 
trajectories in medical image segmentation. This article delves into the nuanced 
application of the Fuzzy C-Means (FCM) clustering method within this sphere. Through 
the careful examination of four distinct case studies, we aim to furnish a thorough 
understanding of its practical ramifications. To provide a balanced perspective, we have 
also dissected other prominent image segmentation techniques, including thresholding, 
region growing, and watershed segmentation. By placing these methods side by side with 
the outcomes of the FCM clustering algorithm, a comparative analysis emerges. Our 
study strongly indicates the pre-eminence of the FCM clustering algorithm, showcasing 
its consistent ability to yield enhanced and intricate segmentation results. It is pivotal to 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 10-2023 
DOI: 10.5281/zenodo.8429562 

Oct 2023 | 166  

highlight that all analytical processes and simulations integral to our case studies were 
executed using MATLAB’s comprehensive toolkit. 

The architecture of this article is meticulously crafted into six detailed sections. Kicking 
off with the first section, we present a comprehensive introduction that delves into the 
backdrop and significance of medical imaging and its intersection with machine learning, 
setting the stage for the subsequent explorations. In the second section, we elaborate on 
and provide an in-depth explanation of the fundamental definitions pertinent to our study. 
Progressing to the third section, we demystify the underpinnings of our research by 
elaborating on the mathematical modelling integral to image segmentation techniques. In 
the fourth section, we pivot to an empirical dimension, presenting a series of case studies 
that exemplify real-world scenarios of medical image analysis, drawing heavily from the 
practical implications we have discussed earlier. The fifth section delves deeper, offering 
a granular interpretation of these case studies, highlighting challenges, successes, and 
key takeaways. Finally, in the sixth section where we synthesize our findings, discussions, 
and insights into a cohesive conclusion, providing a holistic perspective on the 
advancements and potential future trajectories in the domain of medical image 
segmentation. 
 
2. BASIC DEFINITIONS 

2.1 Machine Learning 

Artificial Intelligence (AI) can be described as a human-inspired form of intelligence 
manifesting in machines and software. It's a groundbreaking domain within computer 
science that empowers machines to emulate human-like behaviour. The primary goal of 
AI is not just to simulate human reasoning but also to tackle intricate, real-world 
challenges more effectively. A crucial subset of AI is Machine Learning (ML). ML provides 
the framework that equips machines with the ability to learn and adapt. Instead of relying 
on explicit programming, these systems learn from past experiences, continually refining 
their approaches. This self-improving nature is instrumental in tasks such as prediction 
and classification. Primarily data-driven, modern ML aims to both categorize existing data 
based on established models and forecast future outcomes leveraging those models. 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 42 Issue: 10-2023 
DOI: 10.5281/zenodo.8429562 

Oct 2023 | 167  

 

Phases of Machine Learning Execution 

Machine learning can be streamlined into three distinct phases: 

1. Training Phase: Here, the model is rigorously trained using a dedicated dataset, 
ensuring inputs align with their anticipated outputs. The primary focus during this 
phase is enabling the model to aptly classify and predict based on the provided 
data. 

2. Validation and Testing Phase: In this stage, the trained model is evaluated using a 
distinct test dataset. This assessment determines the efficacy of the model, 
gauging how proficiently it has assimilated its training. 

3. Deployment Phase: Once validated, the model is then introduced to real-world 
scenarios. It's tasked with gleaning insights and producing actionable outputs that 
can effectively address complex real-world challenges. 

2.2 Types of Machine Learning 

The following figure 1 display the flowchart of types and component of machine learning. 
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Figure 1: Flowchart of Types of Machine Learning 

Machine learning encompasses a diverse array of learning techniques 

2.2.1 Supervised Learning 

This method revolves around training models using labelled datasets. A labelled dataset 
is characterized by both its input and the corresponding expected output. This dataset 
essentially guides the model, acting as its mentor, directing it towards making accurate 
predictions. The crux of supervised learning is pattern recognition. The model discerns 
intricate patterns within the data, forming associations with the specified outputs. The 
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foundational logic it develops regarding input-output relationships is determined by the 
algorithm in place and the quality of the labelled training data provided. 

Post-training, the model undergoes a rigorous assessment using a separate labelled 
dataset, previously unseen during its training. Here, the model’s mettle is tested as it 
endeavours to predict outcomes based on the relational logic it formulated during the 
training phase. Figure 2 shows the training and testing in supervised learning. 

 

Figure 2: Training and Testing in Supervised Learning 

2.2.2 Unsupervised Learning 

This approach harnesses algorithms to analyse and cluster unlabelled datasets. Unlike 
its supervised counterpart, there's no guiding dataset during training. Instead, the model 
proactively discerns underlying patterns and insights from the data. Trained with 
unlabelled datasets, the models autonomously act on the data. When presented with new 
inputs, the algorithm categorizes them based on prior knowledge. Renowned for its 
capability to identify similarities and variances, unsupervised learning proves 
indispensable for tasks like exploratory data analysis, customer segmentation, cross-
selling strategies, and image recognition. 

Semi-supervised Learning: Positioned between supervised and unsupervised learning, 
semi-supervised learning seeks a middle ground. While supervised learning relies on 
expensive labelled data and unsupervised learning on unlabelled data, semi-supervised 
learning leverages both. This technique thrives in scenarios where there's a mix of 
abundant labelled and unlabelled data, aiming for optimal predictive performance. 

2.2.3 Clustering in Machine Learning  

Clustering, a fundamental technique in data analysis, serves as a beacon for those 
navigating the vast sea of data, guiding them towards meaningful groupings and 
connections. In this paradigm, individual data points coalesce into well-defined groups or 
clusters, based on their shared attributes. Intriguingly, while these members show 
profound affinities within their own group, they stand in stark contrast to members of other 
groups, underscoring the discriminative power of clustering. 

Diving deeper, clustering finds its roots in the realm of unsupervised learning, a sector of 
machine learning where data is allowed to speak for itself, sans any pre-labelled 
instructions. This branch of learning is less about adhering to predefined labels and more 
about deciphering hidden narratives, discerning underlying structures, and detecting 
generative patterns nestled within the data. The impulse driving unsupervised clustering 
is fuelled by the insatiable curiosity to illuminate these unseen patterns, shedding light on 
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the intricate relationships that tie data points together. Now, when we bring the spotlight 
onto the dynamic domain of image segmentation, the role of clustering in machine 
learning becomes even more paramount. Image segmentation is akin to artfully 
segmenting a vast canvas into meaningful patches, each characterized by unique visual 
features. In this context, clustering algorithms, like K-means, become the artist’s brush, 
segmenting images based on pixel intensities, textures, and colours, ensuring that similar 
features cluster together, painting a comprehensive picture. 

Furthermore, the symbiosis between clustering and image segmentation transcends 
mere categorization. It is about interpreting visual data, decomposing images into 
understandable segments, and thus making them ripe for further analysis, be it in medical 
imaging to distinguish between healthy tissues and anomalies, or in satellite imagery to 
identify landforms. In essence, clustering in machine learning, especially in image 
segmentation, is a testament to the age-old adage - 'unity in diversity', bringing together 
like pixels while celebrating their distinction from the rest. 

2.3 K-means Clustering 

The K-means algorithm is a basic unsupervised learning method that addresses the 
clustering challenge. This algorithm categorizes untagged datasets into groups by 

determining the central point in the high-dimensional space. It divides '𝑛' data points into 
'𝑘' clusters, ensuring every data point is associated with the cluster whose mean is the 
closest, acting as its representative. Throughout this repetitive procedure, clusters are 
determined by calculating the shortest distance, typically the Euclidean distance, between 

data points and their centroids. In 𝐾-means clustering, data points are exclusively 
assigned to a single cluster, ensuring they are not part of any other group, thus it is often 
termed as a strict or definitive clustering method. Such algorithms aim to establish a clear 
separation within a dataset based on set criteria assessing the quality of the separation. 
This definitive separation implies that every single data point is unequivocally linked to 
just one cluster in the set. 

Let's represent 𝑋 as a dataset and consider 𝑥𝑖 as an individual element within 𝑋. A 
partition 𝑃 consisting of {𝐶1, 𝐶2, …, 𝐶𝑙} from 𝑋 is termed “strict” when:  

 For every 𝑥𝑖 in 𝑋, there is a corresponding 𝐶𝑗 in 𝑃 with 𝑥𝑖 being a part of 𝐶𝑗. 

 If 𝑥𝑖 is part of  𝐶𝑗, then 𝑥𝑖 is not a part of 𝐶𝑘 where 𝑘 is not equal to 𝑗, given both 

𝐶𝑘 and 𝐶𝑗 are in 𝑃. 

Steps for Implementing the K-means Clustering Method: 

1. Decide on the number of clusters, denoted by ‘𝐾’. 

2. Select ‘𝐾’ initial centre points (not necessarily from the data points themselves). 

3. Assign each data element to the closest centre point, creating ‘𝐾’ distinct groups. 

4. Calculate the mean of all data points within each cluster and redefine it as the 
new cluster centre. 

5. Reallocate data points to the nearest updated centroid. 
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6. If reallocations are made, revert to step-4; if not, proceed. 

7. Model preparation is complete. 

Unlabelled and labelled data shown in figure 3. 

 

Figure 3: Unlabelled and Labelled Data 

 

Figure 4 display the flowchart of K-means clustering. 
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Figure 4: Flowchart of K-means clustering 
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2.4 Fuzzy c-mean Clustering  

In numerous real-world grouping scenarios, certain data points may align with multiple 
clusters rather than being confined to a singular cluster. This is particularly true when data 
exhibits ambiguous characteristics, prompting the application of fuzzy clustering 
methods.  

Take, for instance, an apple. Traditional clustering would categorize it as either red or 
green. Yet, in fuzzy clustering, an apple might simultaneously exhibit degrees of both 
colours: it could be 50% red and 50% green. While these values are normalized between 
0 and 1, they are not probabilities, meaning they do not necessarily sum up to 1. 

Such insights led to the inception of the “soft clustering” approach. This method seeks a 
“soft partition” of a dataset based on specific criteria, allowing data points to have 
affiliations with several clusters. The idea of a “soft partition” can be described as such: 

Consider 𝑋 as a dataset and 𝑥𝑖 as an element within 𝑋. A partition 𝑃, consisting of {𝐶1, 
𝐶2, …, 𝐶𝑙}, is deemed “soft” if it satisfies the subsequent conditions: 

 For every 𝑥𝑖 in 𝑋 and each 𝐶𝑗 in 𝑃, the value of µ𝐶𝑗
( 𝑥𝑖) lies between 0 and 1. 

 For every 𝑥𝑖 in X, there exists a 𝐶𝑗 in P where µ𝐶𝑗
( 𝑥𝑖) is greater than 0. 

Here, µ𝐶𝑗
( 𝑥𝑖) signifies the extent to which 𝑥𝑖 is associated with the cluster 𝐶𝑗 . 

A specific variant of soft clustering ensures that the sum of the membership degrees of 

an element x across all clusters equals one. This can be represented as: the sum over 𝑗 
of µ𝐶𝑗

( 𝑥𝑖) is 1 for every 𝑥𝑖 in 𝑋. 

A partition deemed “soft” that adheres to this added stipulation is termed a restricted soft 
partition. The fuzzy c-means technique, a prominent fuzzy clustering method, yields this 
kind of partition. It expands upon the c-means method, a traditional hard clustering 
technique introduced as part of the ISODATA clustering approach. The goal of the c-
means method is to pinpoint clusters that are both compact and distinct from one another. 
Here is how distinct clusters are described: 

Consider a partition 𝑃, consisting of {𝐶1, 𝐶2, … , 𝐶𝑘} from dataset 𝑋. This partition exhibits 
compact separation (CS) for clusters when, within the same cluster, any two points are 
nearer to each other than they are to points in different clusters. To put it mathematically: 
for any 𝑥 and 𝑦 in 𝐶𝑃, if 𝑑(𝑥, 𝑦) is less than 𝑑(𝑧, 𝑤), where z is in 𝐶𝑞 and 𝑤 is in 𝐶𝑟 (with 𝑗 

not equal to 𝑘), then 𝑑 stands for a specific distance metric. 

Figure 5 display the hard and soft clustering and figure 6 display the flowchart of fuzzy c 
mean clustering in image segmentation. 
 
3. MATHEMATICAL FORMULATION AND OPERATIONAL PROCEDURE 

The fuzzy c-means method (FCM) extends the capabilities of the conventional c-mean 
algorithm by enabling data points to have fractional memberships across various clusters. 
As a result, it generates a soft categorization for a given dataset. More precisely, it yields 
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a restricted soft partition. This adaptation from the objective function 𝐽1 of the hard c-mean 
is realized through: 

 Integrating degrees of fuzzy membership within clusters into the equation. 

 Introducing a new parameter, 𝑚, to act as a weight exponent for fuzzy 
membership. 

The refined objective function, symbolized as 𝐽𝑚, can be expressed as: 

𝐽𝑚(P, V) = ∑ ∑ (µ𝐶𝑖
(𝑥𝑘))𝑚

𝑥𝑘𝜖𝑋
𝑘
𝑖=1 ||𝑥𝑘 − 𝑣𝑖||

2 

Here, 𝑃 represents the fuzzy categorization of the dataset 𝑋 composed of 𝐶1,𝐶2 …, 𝐶𝑘. 
The parameter m acts as a weighting factor, influencing the impact of data points 
fractional membership on the final clustering outcome. 

Similar to the hard c-means approach, fuzzy c-means aims to identify an optimal partition 

by seeking prototypes 𝑣𝑖 that reduce the value of the objective function 𝐽𝑚. Yet, in contrast 
to the hard c-means method, fuzzy c-means also endeavors to determine membership 
functions µ𝐶𝑖

 that further minimize 𝐽𝑚. To achieve these goals, a requisite condition for 

the local minimum of  𝐽𝑚 was extracted from 𝐽𝑚. This stipulation, which we detail 
subsequently, underpins the fuzzy c-means methodology. 

3.1 Fuzzy c-Means Theorem 

A constrained fuzzy partition encompassing {𝐶1,𝐶2, …, 𝐶𝑘} can attain a local minimum of 
the function 𝐽𝑚 if and only if it adheres to these conditions: 

µ𝐶𝑖
(𝑥)  =  

1

∑ (
||𝑥−𝑣𝑖||

2

||𝑥−𝑣𝑗||
2)

1
𝑚−1⁄𝑘

𝑗=1

 1 ≤  𝑖 ≤  𝑘, 𝑥 𝑖𝑛 𝑋                                                    (1) 

 

𝑣𝑖 = 
∑ (µ𝐶𝑖

(𝑥))𝑚∗𝑥𝑥∈𝑋

∑ (µ𝐶𝑖
(𝑥))𝑚𝑛

𝑥∈𝑋
 1 ≤  𝑖 ≤  𝑘                                                                            (2) 

Leveraging this principle, FCM iteratively refines the prototypes and the membership 
function, utilizing the provided equations, until a specified convergence point is achieved. 

 

Figure 5: Hard and Soft Clustering 
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EXAMPLE 

 𝐹1 𝐹2 

𝑥1 2 12 

𝑥2 4 9 

𝑥3 7 13 

𝑥4 11 5 

𝑥6 12 7 

𝑥7 14 4 

 We have a dataset composed of six data points, as outlined in the previous table. Each 

of these points is defined by two attributes, 𝐹1 and 𝐹2. To categorize this data into two 
distinct clusters (taking 𝑐 = 2), we'll employ the Fuzzy C-Means method. We'll fix the 
parameter 𝑚 at 2 for this FCM application. As starting points for our cluster centers, we'll 
utilize the prototypes 𝑣1= (5,5) and 𝑣2 = (10,10). 

 

Figure 6: Flowchart of Fuzzy C-mean Clustering 
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Solution: Using the previously mentioned equation (1), we computed the starting 
membership values for the two clusters. 

 µ𝐶1
(𝑥1)  =  

1

∑ (
||𝑥1 − 𝑣1||

||𝑥1 − 𝑣𝑗||
)22

𝑗=1

 

||𝑥1 − 𝑣1||2 = 32 + 72 = 9 + 49 = 58 

||𝑥1 − 𝑣2||2 = 82 + 22 = 64 + 4 = 58 

µ𝐶1
(𝑥1) = 

1
58

58
+

58

68

 = 
1

1+0.853
 = 0.5397 

In a similar manner, we derive the following: 

µ𝐶2
(𝑥1) = 

1
68

58
+

68

68

 = 0.4603 

µ𝐶1
(𝑥2) = 

1
17

17
+

17

37

 = 0.6852         µ𝐶2
(𝑥2) = 

1
37

17
+

37

37

 = 0.3148 

µ𝐶1
(𝑥3) = 

1
68

68
+

68

18

 = 0.2093         µ𝐶2
(𝑥3) = 

1
18

68
+

18

18

 = 0.7907 

µ𝐶1
(𝑥4) = 

1
36

36
+

36

26

 = 0.4194         µ𝐶2
(𝑥4) = 

1
26

36
+

26

26

 = 0.5806 

µ𝐶1
(𝑥5) = 

1
53

53
+

53

13

 = 0.197         µ𝐶2
(𝑥5) = 

1
13

53
+

13

13

 = 0.803 

µ𝐶1
(𝑥6) = 

1
82

82
+

82

52

 = 0.3881         µ𝐶2
(𝑥6) = 

1
52

82
+

52

52

 = 0.6119 

Consequently, with the starting prototypes for both clusters, the membership function 

suggests that  𝑥1 and 𝑥2 align more closely with the first cluster, whereas the other points 
in the dataset lean more towards the second cluster. Subsequently, the FCM algorithm 
refines the prototypes based on the previously mentioned equation (2): 

 𝑣1 = 
∑ (µ𝐶1

(𝑥𝑘))2∗ 𝑥𝑘
6
𝑘=1

∑ (µ𝐶1
(𝑥𝑘))26

𝑘=1

 

= 
0.53972∗(2,12)+0.68522∗(4,9)+ 0.20932∗(7,13)+ 0.41942∗(11,5)+ 0.1972∗(12,7)+ 0.38812∗(14,4)

0.53972+ 0.68522+ 0.20932+ 0.41942+ 0.1972+ 0.38812  

= (
7.2761

1.0979
 , 

10.044

1.0979
) 

= (6.6273, 9.1484) 

 𝑣2 = 
∑ (µ𝐶2

(𝑥𝑘))2∗ 𝑥𝑘
6
𝑘=1

∑ (µ𝐶2
(𝑥𝑘))26

𝑘=1

 

= 
0.46032∗(2,12)+ 0.31482∗(4,9)+ 0.79092∗(7,13)+0.58062∗(11,5)+0.8032∗(12,7)+ 0.61192∗(14,4)

0.46032+ 0.31482+0.79092+ 0.58062+ 0.8032+ 0.61192  
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= (
22.326

2.2928
 , 

19.4629

2.2928
) =  (9.7374, 8.4887) 

The modified prototype 𝑣1 shifts nearer to the midpoint of the cluster comprising  𝑥1,𝑥2 , 
and 𝑥3. Meanwhile, the refined prototype 𝑣2 gravitates towards the cluster that includes 

𝑥4 ,𝑥5, and 𝑥6. 
 
4. CASE STUDIES 

We have meticulously gathered X-ray images from a cohort of five patients, aiming to 
delve deeper into advanced segmentation techniques. Illustrated below are the results of 
our comprehensive analysis, which encompassed several state-of-the-art methodologies: 
thresholding, watershed segmentation, K-means clustering, and Fuzzy C-means 
clustering. This segmentation showcase is not only a testament to the sophistication of 
these techniques but also demonstrates their potential applicability in real-world medical 
imaging scenarios. 

Figure 7 to 11 display the x-ray image and output of image segmentation methods of five 
patients. 

                             Patient 1                                                                        Patient 2 

 

Figure 7: Xray Image and output of 
segmentation methods 

Figure 8: Xray Image and output of 
segmentation methods 
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Patient 3                                                                          Patient 4 

 

Figure 9: Xray Image and output of 
segmentation methods 

Figure 10: Xray Image and output of 
segmentation methods 

Patient 5 
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Figure 11: Xray Image and output of segmentation methods 

In the comprehensive evaluation of the obtained patient images, we have strategically 
implemented a fuzzy inference system (FIS). This decision underscores our commitment 
to precision and depth in analysis. The detailed methodology we followed using this 
system is presented below:  

In Table 1, we present the various input factors, each accompanied by their respective 
linguistic variables, offering a clear delineation of the parameters under consideration. 
Moving on to Table 2, we have meticulously constructed fuzzy rules, leveraging these 
aforementioned input factors. It is important to note that our primary output factor in this 
analysis is the ‘image improvement score’. Subsequent to our rigorous implementation of 
the Fuzzy Inference System (FIS) in MATLAB, employing both the designated input 
factors and our crafted fuzzy rules, we derived a set of image improvement scores. These 
scores, which evaluate the effectiveness of different image segmentation methods, are 
comprehensively detailed in Table 3. 

Table 1 

 Input factors 

Edge Clarity Low (0-0.4) Medium (0.2-0.8) High (0.6 and above) 

Region Uniformity Poor (0-0.4) Average (0.3-0.7) Good (0.6 and above) 

Contrast Quality Weak (0-0.5) Moderate (0.2-0.8) Strong (0.58 and above) 
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Table 2 

 Input factors Output 

 Edge clarity Region Uniformity Contrast Quality Image Improvement Score 

1 Low Poor Weak Poor 

2 Low Average Moderate Poor 

3 Medium Poor Weak Poor 

4 Medium Average Moderate Average 

5 High Good Strong Good 

6 High Poor Weak Average 

7 Medium Good Strong Average 

8 Low Good Strong Average 

9 High Average Moderate Good 

10 Low Average Strong Average 

Table 3 

Patients 
 

Methods 
 

Patient 1 
(Image 

Improvement 
Score) 

Patient 2 
(Image 

Improvement 
Score) 

Patient 3 
(Image 

Improvement 
Score) 

Patient 4 
(Image 

Improvement 
Score) 

Patient 5 
(Image 

Improvement 
Score) 

Threshold 0.399 0.332 0.341 0.276 0.283 

Watershed 0.263 0.406 0.259 0.234 0.371 

KM, 
Clusters=3 

0.500 0.352 0.319 0.329 0.303 

KM, 
Clusters=4 

0.500 0.383 0.465 0.416 0.437 

KM, 
Clusters=5 

0.565 0.500 0.536 0.535 0.520 

FCM, 
Clusters=3 

0.633 0.328 0.506 0.500 0.488 

FCM, 
Clusters=4 

0.706 0.490 0.549 0.552 0.500 

FCM, 
Clusters=5 

0.828 0.623 0.646 0.668 0.607 

 
5. RESULTS INTERPRETATION AND DISCUSSION 

In our meticulous analysis of imaging characteristics, as highlighted in Table 1, we 
carefully delineated three critical input factors: ‘Edge Clarity’, ‘Region Uniformity’, and 
‘Contrast Quality. These were subsequently translated into descriptive linguistic terms 
using pre-established value ranges. To illustrate, the ‘Edge Clarity parameter is 
segmented such that values not exceeding 0.4 are labelled as ‘Low’. In contrast, values 
that ascend beyond the 0.6 mark are distinctly categorized as ‘High’. Progressing to the 
fuzzy rule matrix exhibited in Table 2, a prominent observation emerges: images marked 
by a ‘Low’ edge clarity, in conjunction with ‘Poor’ uniformity and ‘Weak’ contrast, are 
unequivocally assigned a ‘Poor’ score in terms of image improvement. On the other end 
of the spectrum, images that manifest a congruous amalgamation of ‘High’ edge clarity, 
complemented by ‘Good’ region uniformity and ‘Strong’ contrast quality, consistently earn 
a commendable ‘Good’ rating. Venturing further into the nuanced, patient-centric data 
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illustrated in Table 3, a consistent pattern becomes evident: the Fuzzy C-Means (FCM) 
segmentation approach, notably when utilizing 5 clusters, often eclipses other 
methodologies in procuring the most favourable image improvement scores across 
diverse patient samples. Such observations elevate the critical importance of elements 
like contrast quality and edge clarity as pivotal influencers shaping the overarching 
success of the chosen segmentation strategy. For a visual representation that juxtaposes 
the various image segmentation methodologies against the resultant image improvement 
scores garnered from patient samples, one can refer to the comparative graph in Figure 
12. 

 

 

Figure12: Comparison Between Image Segmentation Methods And Image 
Improvement Scores 

Among all the techniques, fuzzy c means clustering algorithm appeared to be the most 
effective for segmenting x-ray images of the patients under study. The choice of 
segmentation method and the number of clusters should be tailored based on the specific 
anatomical structures or pathologies that need to be highlighted in the x-ray images. It is 
also essential to consider the computational efficiency and time taken by each method, 
especially if the intention is real-time or near-real-time processing. 
 
6. CONCLUSION 

As we journey through the evolving realms of machine learning and its transformative 
influence on medical image analysis, it becomes abundantly clear that innovative 
clustering and segmentation methods are setting new benchmarks in the field. Among 
these, the Fuzzy C-Means (FCM) clustering technique stands out, demonstrating not just 
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its theoretical relevance but also its practical applicability, as evidenced by our deep dive 
into five varied case studies. While we have explored multiple segmentation 
methodologies such as Thresholding, Watershed, and K-means clustering, FCM 
consistently showcased its upper hand, reinforcing its credibility and potential in the 
medical imaging domain. The fuzzy inference system (FIS) provided an apt evaluation 
mechanism, further strengthening our analyses. The culmination of our research 
underscores the pivotal role of FCM in advancing medical image analysis, producing 
results of exceptional depth and precision. Furthermore, the seamless integration of 
MATLAB in our study exemplifies the symbiotic relationship between modern technology 
and rigorous academic research, paving the way for future explorations in this domain. 
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