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Abstract 

In this paper, we study the problem of jointly selecting the number of components and explanatory variables 
for multivariate mixture regression models. In practice, the selection model using the Akaike Information 
Criterion AIC is not satisfactory, as it can lead to an overestimation of the number of components and the 
number of explanatory variables. To improve selection, Naik et al. (2007) developed a new criterion based 
on Akaike’s technique, the Mixture Regression Criterion MRC for the simultaneous determination of the 
number of components and explanatory variables for univariate mixture regression models. We propose a 

generalization of the criterion MRC for multivariate mixture regression models. The performance of the new 
criterion is validated on simulated data by comparing it to the Akaike criterion AIC and the Schwarz criterion 

BIC. 

Keywords: Model Selection, Information Criteria, Criterion 𝑀𝑅𝐶, Multivariate Mixture Regression Models. 

 
1. INTRODUCTION 

Mixture regression models combine several regression models to model different sub-
populations in relation to the observed data. Each sub-population is modeled by a 
different regression model whose weight corresponds to the proportion of this sub-
population in the total population. Mixture regression models are useful for modeling 
situations where the relationships between explanatory variables may vary between sub-
populations. They are also useful for detecting heterogeneous sub-populations with 
different relationships between explanatory variables. These models first appeared in the 
economic literature as “switching regression” (Quandt, 1972; Quandt et al., 1978) [13, 14] 
and have been widely used to explore the source of heterogeneity when groups of 
individuals respond differently to a predictor. Over the last decades, mixture regression 
models have been used in a large number of applications in a wide range of scientific 
disciplines. These models are commonly used in econometrics, biostatistics, and social 
sciences.  

Selecting the appropriate order in multivariate mixture regression models typically 
involves determining the number of components in the mixture and the number of 
explanatory variables in each regression model.  
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The classical model selection criterion 𝐴𝐼𝐶 (Akaike, 1973) [1] may not yield satisfactory 
results in selecting both the number of components and explanatory variables, particularly 
when the sample size is small, it leads to an over estimation of the number of components 
and the number of variables for mixture regression models. To overcome this problem, 

Naik et al. [12] developed the Mixture Regression Criterion 𝑀𝑅𝐶 for the simultaneous 
determination of the number of components and explanatory variables for univariate 
mixture regression models, based on the log-likelihood of complete data and asymmetric 
divergence of Kullback [8] between the true and fitted approximating models. Using the 
same technique, we derive a new criterion, denoted 𝑀𝑅𝐶𝑣 (𝑣𝑒𝑐𝑡𝑜𝑟 𝑀𝑅𝐶), which 

generalizes the 𝑀𝑅𝐶 criterion to multivariate mixture regression models. 

The paper is organized as follows. We present in Section 2 the multivariate mixture 

regression model and parameter estimation using the 𝐸𝑀 algorithm. In Section 3, we 
derive the criterion 𝑀𝑅𝐶𝑣. In Section 4, we highlight the performance of our criterion 𝑀𝑅𝐶𝑣 
compared to the criteria 𝐴𝐼𝐶 and 𝐵𝐼𝐶 on simulated data from multivariate gaussian 
mixture regression models. 

1. Multivariate gaussian mixture regression models  

Let 𝑦 be a 𝑚-dimensional response variable and a 𝑝-dimensional explanatory variable 𝑥.  

A multivariate gaussian mixture regression model consists of expressing 𝑦 as a function 
of 𝑥 as follows 

                                     𝑦 =

{
 
 

 
 
𝛽1
′𝑥 + 𝜖1    𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼1
𝛽2
′𝑥 + 𝜖2    𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼2

.

.

.
𝛽𝑘
′𝑥 + 𝜖𝑘    𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼𝑘

 

such that for 𝑗 = 1, … , 𝑘,  0 <  𝛼𝑗  ≤  1 and ∑ 𝛼𝑗 = 1
𝑘
𝑗=1 ,  𝛽𝑗 is the 𝑝 × 𝑚 matrix of regression 

coefficients, and 𝜖𝑗 is the 𝑚− dimensional random error, we suppose that 𝜖𝑗 follows a 

gaussian distribution with mean 0 and covariance matrix Σ𝑗, 𝜖𝑗 ∼ 𝒩𝑚(0, Σ𝑗). 

Let 𝜙 =  {(𝛼𝑗, 𝛽𝑗 , 𝛴𝑗), 𝑗 = 1,… , 𝑘} be the set of parameters. The conditional density of 𝑦 

given 𝑥 is 

     𝑓(𝑦; 𝑥, 𝜙) =  ∑𝛼𝑗𝑓𝑗

𝑘

𝑗=1

(𝑦; 𝑥, 𝛽𝑗, 𝛴𝑗)                                                     (1)    

𝑘 is the number of model components and 𝑓𝑗 is the density function of the gaussian 

distribution of dimension 𝑚 with mean 𝛽𝑗
′𝑥 and covariance matrix  Σ𝑗. 

𝑓𝑗 (𝑦; 𝑥, 𝛽𝑗 , Σ𝑗) = (2𝜋)− 
𝑚
2 (det(Σ𝑗))

−
1
2𝑒𝑥𝑝{−

1

2
(y − 𝛽𝑗

′𝑥)′Σ𝑗
−1(𝑦 − 𝛽𝑗

′𝑥)} 
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Let {(𝑦1, 𝑥1), … , (𝑦𝑛, 𝑥𝑛)} be an independent observed sample from the model (1), the log-
likelihood function is 

      𝐿(𝜙; 𝑌, 𝑋) =∑𝑙𝑜𝑔{∑𝛼𝑗𝑓𝑗(𝑦𝑖; 𝑥𝑖

𝑘

𝑗=1

, 𝛽𝑗 , ∑𝑗)}

𝑛

𝑖=1

                                 (2) 

where 𝑌 = (𝑦1, … , 𝑦𝑛)′ and 𝑋 = (𝑥1, … , 𝑥𝑛)
′.  

The maximum likelihood estimator for the parameters 𝜙 is  

                               𝜙̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜙

{𝐿(𝜙; 𝑌, 𝑋)}                                                (3) 

However, no explicit solution is available due to the complex expression of 𝐿(𝜙; 𝑌, 𝑋). We 
use the 𝐸𝑀 (Expectation-Maximization) algorithm (Dempster et al, 1977) [4] to solve this 
problem in which we introduce a latent variable 𝑍 of dimension 𝑛 × 𝑘 such that  

𝑧𝑖𝑗 = {
1      𝑖𝑓 ( 𝑦𝑖, 𝑥𝑖) 𝑎𝑟𝑖𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑗

𝑡ℎ𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
 0                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We put 𝑧𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝑘), the completed data became ((𝑦𝑖, 𝑥𝑖, 𝑧𝑖), 𝑖 = 1,… , 𝑛). The log-
likelihood function for the completed data is  

𝐿𝑐(𝜙; 𝑌, 𝑋, 𝑍) =   log∏∏{𝛼𝑗𝑓𝑗(𝑦𝑖; 𝑥𝑖, 𝛽𝑗, Σ𝑗)}
𝑧𝑖𝑗
                       

𝑘

𝑗=1

𝑛

𝑖=1

 

                                           = ∑∑𝑧𝑖𝑗{𝑙𝑜𝑔 𝛼𝑗 + 𝑙𝑜𝑔 𝑓𝑗(𝑦𝑖 ; 𝑥𝑖 , 𝛽𝑗 , 𝛴𝑗)}

𝑘

𝑗=1

𝑛

𝑖=1

                      (4) 

The EM algorithm is an iterative estimation algorithm, starting with an initial parameter 

value  𝜙(°). For each iteration, we calculate the new parameters 𝜙(𝑞+1) from those of the 

previous iteration 𝜙(𝑞). 

E step:  

Calculate the expectation of 𝐿𝑐 conditional on the observed data and the current 
parameter. We obtain 

𝑄(𝜙, 𝜙(𝑞)) = 𝐸(𝐿𝑐/𝑌, 𝑋, 𝜙
(𝑞)) =∑∑𝜏𝑖𝑗

(𝑞)
{log 𝛼𝑗 + log 𝑓𝑗 (𝑦𝑖; 𝑥𝑖 , 𝛽𝑗 , ∑𝑗)}

𝑘

𝑗=1

𝑛

𝑖=1

 

where 𝜏𝑖𝑗
(𝑞)
= 𝐸(𝑧𝑖𝑗 𝑦𝑖⁄ , 𝑥𝑖, 𝜙

(𝑞)) = 𝑃(𝑧𝑖𝑗 = 1 𝑦𝑖, 𝑥𝑖, 𝜙
(𝑞))⁄  

by the Bayes’s formula, we have 

                             𝜏𝑖𝑗
(𝑞)
=

𝛼𝑗
(𝑞)   𝑓𝑗(𝑦𝑖; 𝑥𝑖, 𝛽𝑗

(𝑞), ∑𝑗
(𝑞)
)

∑𝑗=1
𝑘 𝛼𝑗

(𝑞)
𝑓𝑗(𝑦𝑖; 𝑥𝑖 , 𝛽𝑗

(𝑞)
, ∑𝑗

(𝑞)
)
                                                       (5)       
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M step: 

Compute 𝜙(𝑞+1) maximizing 𝑄(𝜙, 𝜙(𝑞))  with respect to 𝜙. We obtain the following updates     

                                                             𝛼𝑗
(𝑞+1)

= ∑
𝜏𝑖𝑗
(𝑞)

𝑛

𝑛
𝑖=1                            

                                                     𝛽𝑗
(𝑞+1)

= (𝑋̃𝑗
(𝑞)′  𝑋̃𝑗

(𝑞))−1𝑋̃𝑗
(𝑞)′  𝑌̃𝑗

(𝑞)
 

            ∑𝑗
(𝑞+1)

=
𝑌̃𝑗
(𝑞)′ (𝐼 − 𝐻̃𝑗

(𝑞)) 𝑌̃𝑗
(𝑞)

𝑡𝑟(𝑊𝑗
(𝑞)
)

      

where 𝑊𝑗
(𝑞) = 𝑑𝑖𝑎𝑔 (𝜏𝑗

(𝑞)),  𝜏𝑗
(𝑞)
= (𝜏1𝑗

(𝑞), … , 𝜏𝑛𝑗
(𝑞))′ , 𝑌̃𝑗

(𝑞) = (𝑊𝑗
(𝑞))1 2⁄ 𝑌        

𝑋̃𝑗
(𝑞)

  = (𝑊𝑗
(𝑞))1 2⁄ 𝑋   and   𝐻̃𝑗

(𝑞) = 𝑋̃𝑗
(𝑞)(𝑋̃𝑗

(𝑞)′  𝑋̃𝑗
(𝑞))−1𝑋̃𝑗

(𝑞)′
 

We denote 𝛼̂1, … , 𝛼̂𝑘 , 𝛽̂1, … , 𝛽̂𝑘, Σ̂1, … , Σ̂𝑘 the estimators obtained by the EM algorithm 
(we fix a stop threshold for the iterations). 

3. Estimating the number of components and variables in multivariate gaussian 
mixture regression models 

Our objective is the joint selection of the number of components and explanatory variables 
in multivariate gaussian mixture regression models. 

3.1. The criterion 𝑴𝑹𝑪 for univariate gaussian mixture regression models 

In a univariate gaussian mixture regression model, the conditional density of the response 

variable 𝑦 as a function of the explanatory variable  𝑥 is written as follows 

𝑓(𝑦; 𝑥, 𝜙) =  ∑𝛼𝑗𝑓𝑗

𝑘

𝑗=1

(𝑦; 𝑥, 𝛽𝑗 , 𝜎𝑗
2)  

where 𝜙 = {(αj, βj, σj
2), j = 1,… , k} is the set of parameters such that 

0 ˂ 𝛼𝑗 ≤ 1 and  ∑j=1
k αj = 1, 𝑘 is the number of model components,  𝛽𝑗 is a 𝑝 × 1 parameter 

vector, 𝑥 is a fixed 𝑝 × 1 vector of explanatory variables and 𝑓𝑗 is the density function of 

the univariate gaussian distribution with mean 𝑥′βj and variance σj
2. The parameters are 

estimated by the 𝐸𝑀 algorithm  

𝛼̂𝑗 =∑
𝜏̂𝑖𝑗

𝑛

𝑛

𝑖=1

             

 𝛽̂𝑗 = (𝑋̂𝑗
′𝑋̂𝑗)

−1𝑋̂𝑗
′𝑌̂𝑗 

𝜎̂𝑗
2 = 

𝑌̂𝑗
′(𝐼 − 𝐻̂𝑗)𝑌̂𝑗

𝑡𝑟(𝑊̂𝑗)
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where  𝑊̂𝑗 = 𝑑𝑖𝑎𝑔(𝜏̂𝑗),  𝜏̂𝑗 = (𝜏̂1𝑗, … , 𝜏̂𝑛𝑗)
′
, 𝑌̂𝑗 = (𝑊̂𝑗)

1
2⁄  𝑌,   𝑋̂𝑗 = (𝑊̂𝑗)

1
2⁄  𝑋  

and   𝐻̂𝑗 = 𝑋̂𝑗(𝑋̂𝑗
′𝑋̂𝑗)

−1𝑋̂𝑗
′ 

For the simultaneous determination of the unknown number of components 𝑘° and the 

unknown number 𝑝° of explanatory variables for a univariate gaussian mixture regression 
model, Naik et al. [12] developed the Mixture Regression Criterion 𝑀𝑅𝐶 based on the 
Kulback asymmetric divergence and the log-likelihood of complete data 

𝑀𝑅𝐶(𝑘, 𝑝) =∑𝑛̂𝑗 log(𝜎̂𝑗
2

𝑘

𝑗=1

) +∑
𝑛̂𝑗(𝑛̂𝑗 + 𝑝𝑗)

(𝑛̂𝑗 − 𝑝𝑗 − 2)

𝑘

𝑗=1

− 2∑𝑛̂𝑗

𝑘

𝑗=1

log(𝛼̂𝑗) 

with 𝑝 = (𝑝1, … , 𝑝𝑘), 𝑛̂𝑗 = 𝑡𝑟(𝑊̂𝑗) and 𝑝𝑗 = 𝑡𝑟(𝐻̂𝑗) 

(𝑘̂, 𝑝̂) = 𝑎𝑟𝑔𝑚𝑖𝑛
1≤𝑘≤𝐾,   1≤𝑝1,… ,𝑝𝑘≤𝑃

{𝑀𝑅𝐶(𝑘, 𝑝)} 

where 𝐾 and 𝑃 are sufficiently large such that 𝐾 ≥ 𝑘° and  𝑃 ≥ max { 𝑝𝑗
° , 𝑗 = 1, … , 𝑘°}. 

The criterion 𝑀𝑅𝐶 is composed of three terms: 

The first term measures the lack of fit, the second term imposes a penalty on the 
regression parameters and the third term penalizes the number of components. 

We propose to extend their technique to multivariate gaussian mixture regression models 

by developing a more general criterion denoted 𝑀𝑅𝐶𝑣. 

3.2. Extension of the criterion 𝑀𝑅𝐶 for multivariate gaussian mixture regression 
models 

Suppose that the density associated with the true model is  

                 𝑓°(𝑦; 𝑥°,  𝜙°) =∑𝛼𝑗
°

𝑘°

𝑗=1

𝑓𝑗
°(𝑦; 𝑥°, 𝛽𝑗

°, 𝛴𝑗
°)                                                              (6) 

where 𝑦 ∈  ℝ𝑚, 𝑥°  ∈  ℝ𝑝
°
,  𝜙° = {(𝛼𝑗

°, 𝛽𝑗
°, Σ𝑗

°),   𝑗 = 1,… , 𝑘°} is the set of true 

model parameters such that (0 ˂𝛼𝑗
° ≤ 1 and ∑𝑗=1

𝑘° 𝛼𝑗
° = 1), 𝑘° is the number of components 

of the true model and 𝑓𝑗
° is the density function of the gaussian distribution of dimension 

𝑚 with mean (𝛽𝑗
°)′𝑥∘ and covariance matrix Σ𝑗

°. 

We assume that the class of candidate models, as defined by (1), includes the true model 

of order (𝑘°, 𝑝°). Under this assumption, the columns of 𝑋 can be rearranged so 

that 𝑋°𝛽𝑗
° = 𝑋𝛽𝑗

∗  with  𝛽𝑗
∗ = ( (𝛽𝑗

°)
′
, (𝛽𝑗

1)
′
)′ and 𝛽𝑗

1 is the null matrix of dimension (𝑝 − 𝑝°) ×

𝑚,  

for 𝑗 = 1,… , 𝑘°  when 𝑝 ≥  𝑝°. (Edward, J. et al., 1994) [6]  
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The candidate model has been fitted using the observed sample 𝑌 and the estimated 

parameters 𝜃 = (𝜙̂,  𝜏̂) where  𝜏̂ = (𝜏̂1, … , 𝜏̂𝑘) are obtained by the 𝐸𝑀 algorithm. 
Let 𝑌∗ = (𝑦1

∗, … , 𝑦𝑛
∗)′ be a sample associated with the true model and independent of  𝑌, 

and we measure the goodness of fit by  

𝐼 (𝜃°, 𝜃(𝑌)) = 𝐸𝑌
|𝜃°
∗ {𝐿𝑐

° (𝜙°; 𝑍∗, 𝑌∗, 𝑋) − 𝐿𝑐(𝜙̂(𝑌); 𝜏̂(𝑌), 𝑌
∗, 𝑋)}                               (7) 

where 𝑍∗ is an 𝑛 × 𝑘° matrix such that  

𝑧𝑖𝑗
∗ = {1      𝑖𝑓 

( 𝑦𝑖
∗, 𝑥𝑖) 𝑎𝑟𝑖𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑗

𝑡ℎ𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

 0                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸𝑌
|𝜃°
∗ denotes the expectation under the true model and 𝜃° = (𝜙°, 𝜏°) where  𝜏𝑖𝑗

° = 𝐸(𝑧𝑖𝑗
∗ 𝑦𝑖

∗⁄ ) 

We base the order estimation on the minimization of 

𝐸𝑌
|𝜃°
{𝐼(𝜃°, 𝜃 (𝑌))} = 𝐸𝑌

|𝜃°
{𝐸𝑌

|𝜃°
∗ {𝐿𝑐

° (𝜙°; 𝑍∗, 𝑌∗, 𝑋)}} − 𝐸𝑌
|𝜃°
{𝐸𝑌

|𝜃°
∗ {𝐿𝑐(𝜙̂(𝑌); 𝜏̂(𝑌), 𝑌

∗, 𝑋)}} 

Considering only the terms that depend on the candidate model, the order estimation is 

obtained by minimizing   𝐸𝑌
|𝜃°
{𝐸𝑌

|𝜃°
∗ {−𝐿𝑐(𝜙 ̂(𝑌); 𝜏̂(𝑌), 𝑌

∗, 𝑋)}}. We have  

        𝐿𝑐 (𝜙̂(𝑌); 𝜏̂(𝑌), 𝑌
∗, 𝑋) =∑∑𝜏̂𝑖𝑗

𝑛

𝑖=1

𝑘

𝑗=1

{𝑙𝑜𝑔 𝛼̂𝑗 + 𝑙𝑜𝑔 𝑓𝑗 (𝑦𝑖
∗; 𝑥𝑖 , 𝛽̂𝑗 , 𝛴̂𝑗)}                   

                       =     ∑∑𝜏̂𝑖𝑗

𝑛

𝑖=1

𝑘

𝑗=1

{𝑙𝑜𝑔 𝛼̂𝑗 −
𝑚

2
𝑙𝑜𝑔(2𝜋)}      

−
1

2
∑∑𝜏̂𝑖𝑗

𝑛

𝑖=1

𝑘

𝑗=1

𝑙𝑜𝑔(det ( 𝛴̂𝑗))   

                                              −
1

2
∑∑𝜏̂𝑖𝑗

𝑛

𝑖=1

𝑘

𝑗=1

(𝑦𝑖
∗ − 𝛽̂𝑗

′𝑥)′𝛴̂𝑗
−1(𝑦𝑖

∗ − 𝛽̂𝑗
′𝑥)                         

Then     𝐿𝑐 (𝜙̂(𝑌), 𝜏̂(𝑌), 𝑌
∗, 𝑋)  = ∑ 𝑡𝑟(𝑊̂𝑗) 𝑙𝑜𝑔 𝛼̂𝑗 −

𝑛𝑚

2
𝑙𝑜𝑔(2𝜋)𝑘

𝑗=1   

                                                  −
1

2
∑𝑡𝑟(𝑊̂𝑗) 𝑙𝑜𝑔(det ( 𝛴̂𝑗))

𝑘

𝑗=1

                 

                                   −
1

2
∑𝑡𝑟 [𝑊̂𝑗

1 2⁄ (𝑌∗ − 𝑋𝛽̂𝑗)𝛴̂𝑗
−1(𝑌∗ − 𝑋𝛽̂𝑗)

′
𝑊̂𝑗

1 2⁄ ]

𝑘

𝑗=1

                     (8)   
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So 

−2𝐸𝑌
|𝜃°
∗ {𝐿𝑐(ɸ̂(𝑌), 𝜏̂(𝑌), 𝑌

∗, 𝑋)} = −2∑𝑡𝑟

𝑘°

𝑗=1

(𝑊̂𝑗) 𝑙𝑜𝑔 𝛼̂𝑗 + 𝑛𝑚 𝑙𝑜𝑔(2𝜋)                                        

            +∑𝑡𝑟

𝑘°

𝑗=1

(𝑊̂𝑗) 𝑙𝑜𝑔(𝑑𝑒𝑡 ( 𝛴̂𝑗)) 

                                                 +𝐸𝑌
|𝜃°
∗ {∑𝑡𝑟[𝑊̂𝑗

1 2⁄ (𝑌∗ − 𝑋𝛽̂𝑗)𝛴̂𝑗
−1(𝑌∗ − 𝑋𝛽̂𝑗)

′𝑊̂𝑗
1 2⁄ ]

𝑘

𝑗=1

}       (9)      

We put  𝐴 = 𝐸𝑌
|𝜃°
∗ {∑ 𝑡𝑟 [𝑊̂𝑗

1 2⁄ (𝑌∗ − 𝑋𝛽̂𝑗)Σ̂𝑗
−1(𝑌∗ − 𝑋𝛽̂𝑗)

′
𝑊̂𝑗

1 2⁄ ]𝑘
𝑗=1 } 

and       𝑈𝑗
° = 𝑌∗ − 𝑋°𝛽𝑗

° = 𝑌∗ − 𝑋𝛽𝑗
∗  

Then 𝐴 = 𝐸𝑌
|𝜃°
∗ {∑ 𝑡𝑟 [𝑊̂

𝑗

1
2⁄ (𝑋𝛽𝑗

∗ + 𝑈𝑗
° − 𝑋𝛽̂𝑗)] Σ̂𝑗

−1𝑘
𝑗=1 [𝑊̂

𝑗

1
2⁄ (𝑋𝛽𝑗

∗ + 𝑈𝑗
° − 𝑋𝛽̂𝑗)]

′

}                  

                = 𝐸𝑌
|𝜃°
∗ [∑𝑡𝑟{𝑋̂𝑗(𝛽𝑗

∗ − 𝛽̂𝑗)Σ̂𝑗
−1(𝛽𝑗

∗ − 𝛽̂𝑗)
′𝑋̂𝑗

′}

𝑘

𝑗=1

] + 𝐸𝑌
|𝜃°
∗ [∑𝑡𝑟 {𝑊̂

𝑗

1
2⁄ 𝑈𝑗

°Σ̂𝑗
−1(𝑈𝑗

°)′𝑊̂
𝑗

1
2⁄ }

𝑘

𝑗=1

] 

                = 𝐸𝑌
|𝜃°
∗ [∑𝑡𝑟{𝑋̂𝑗(𝛽𝑗

∗ − 𝛽̂𝑗)Σ̂𝑗
−1(𝛽𝑗

∗ − 𝛽̂𝑗)
′𝑋̂𝑗

′}

𝑘

𝑗=1

] + 𝐸𝑌
|𝜃°
∗ [∑𝑡𝑟{Σ̂𝑗

−1(𝑈𝑗
°)′𝑊̂𝑗(𝑈𝑗

°)}

𝑘

𝑗=1

]             

          = ∑𝑡𝑟{𝑋̂𝑗(𝛽𝑗
∗ − 𝛽̂𝑗)𝛴̂𝑗

−1(𝛽𝑗
∗ − 𝛽̂𝑗)

′𝑋̂𝑗
′}

𝑘°

𝑗=1

+∑𝑡𝑟{𝛴̂𝑗
−1𝑡𝑟(𝑊̂𝑗)𝛴𝑗

°}

𝑘°

𝑗=1

                             (10) 

So  

𝐸𝑌
|𝜃°
{−2𝐸𝑌

|𝜃°
∗ {𝐿𝑐(ɸ ̂ (𝑌), 𝜏̂(𝑌), 𝑌

∗, 𝑋)}} = 𝐸𝑌
|𝜃°
{−2∑𝑡𝑟(𝑊̂𝑗)

𝑘°

𝑗=1

𝛼̂𝑗 + 𝑛𝑚 log(2𝜋)}                

                                       +𝐸𝑌
|𝜃°
{∑𝑡𝑟

𝑘°

𝑗=1

(𝑊̂𝑗) 𝑙𝑜𝑔(𝑑𝑒𝑡 ( Σ̂𝑗))} 

                                                           +𝐸𝑌
|𝜃°
{∑𝑡𝑟{𝑋̂𝑗(𝛽𝑗

∗ − 𝛽̂𝑗)𝛴̂𝑗
−1(𝛽𝑗

∗ − 𝛽̂𝑗)
′𝑋̂𝑗

′}

𝑘°

𝑗=1

} 

                                                                           +𝐸𝑌
|𝜃°
{∑ 𝑡𝑟(𝑊̂𝑗)

𝑘°

𝑗=1 𝑡𝑟(𝛴̂𝑗
−1𝛴𝑗

°)}                               (11)   
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𝜏̂𝑗 is a consistent estimator of 𝜏𝑗
° = (𝜏1𝑗

° , … , 𝜏𝑛𝑗
° ) where 𝜏𝑖𝑗

° = 𝐸(𝑧𝑖𝑗
° 𝑦𝑖, 𝑥𝑖⁄ ) [15, 9, 12] 

Consequently, we can consider 𝑊𝑗
° = 𝑑𝑖𝑎𝑔(𝜏𝑗

°) and 𝐻𝑗
° in the third and fourth terms of (11) 

instead of 𝑊̂𝑗 and  𝐻̂𝑗 respectively, where 𝐻𝑗
° = 𝑋𝑗

°(𝑋𝑗
°′𝑋𝑗

°′)
−1
𝑋𝑗
°′  and 𝑋𝑗

° = (𝑊𝑗
°)
1 2⁄
𝑋 and to 

simplify further we assume that in the true model, the classes are disjoint such that the 

diagonal elements of  𝑊𝑗
°are equal to either 1 or 0. 

Furthermore,  Σ̂𝑗 is asymptotically independent of 𝛽̂𝑗   and 𝑛𝑗
°Σ̂𝑗  is asymptotically distributed 

as 𝑊𝑖𝑠ℎ𝑎𝑟𝑡𝑚(Σ𝑗
°, 𝑛𝑗

° − 𝑝𝑗
°), and 𝐸𝑌

|𝜃°
(Σ̂𝑗

−1) ≈ 𝑑𝑗
°(Σ𝑗

°)
−1

 where 𝑑𝑗
° =

𝑛𝑗
°

𝑛𝑗
°−(𝑝𝑗

°+𝑚+1)
  (Anderson, 

pp. 270, 290) [2]. Consequently 

𝐸𝑌
|𝜃°
{∑𝑡𝑟{𝑋𝑗

°(𝛽𝑗
∗ − 𝛽̂𝑗)Σ̂𝑗

−1(𝛽𝑗
∗ − 𝛽̂𝑗)

′(𝑋𝑗
°)′}

𝑘°

𝑗=1

}                                                                

=∑{𝑡𝑟 [𝐸𝑌
|𝜃°
(𝛴̂𝑗

−1)𝐸𝑌
|𝜃°
{(𝛽𝑗

∗ − 𝛽̂𝑗)
′
(𝑋𝑗

°)′ 𝑋𝑗
°(𝛽𝑗

∗ − 𝛽̂𝑗)}]}

𝑘°

𝑗=1

 

≈∑{𝑡𝑟 [𝑑𝑗
°(𝛴𝑗

°)
−1
𝐸𝑌

|𝜃°
{(𝛽𝑗

∗ − 𝛽̂𝑗)
′
(𝑋𝑗

°)′ 𝑋𝑗
°(𝛽𝑗

∗ − 𝛽̂𝑗)}]} 

𝑘°

𝑗=1

 

=∑{𝑑𝑗
° 𝑡𝑟 [  𝐸𝑌

|𝜃°
{(Σ𝑗

°)
−1
(𝛽𝑗

∗ − 𝛽̂𝑗)
′

(𝑋𝑗
°)′ 𝑋𝑗

°(𝛽𝑗
∗ − 𝛽̂𝑗)}]} 

𝑘°

𝑗=1

 

              = ∑{𝑑𝑗
° 𝐸𝑌

|𝜃°
[𝑣𝑒𝑐(𝛽̂𝑗−𝛽𝑗

∗)
′
{(𝛴𝑗

°)
−1
⊗ (𝑋𝑗

°)′𝑋𝑗
°} 𝑣𝑒𝑐(𝛽̂𝑗 − 𝛽𝑗

∗)]} 

𝑘°

𝑗=1

 

                         = ∑{𝑑𝑗
°𝑝𝑗
°𝑚}                                                                                                    (12)

𝑘°

𝑗=1

 

Because 𝑣𝑒𝑐(𝛽̂𝑗−𝛽𝑗
∗)
′
{(Σ𝑗

°)
−1
⊗ (𝑋𝑗

°)′𝑋𝑗
°} 𝑣𝑒𝑐(𝛽̂𝑗 − 𝛽𝑗

∗)~𝜒
𝑝𝑗
°𝑚
2   (Edward et al., 1994) [6] 

where 𝑣𝑒𝑐(𝛽̂𝑗 − 𝛽𝑗
∗) is the vector of dimension 𝑝𝑗

°𝑚 obtained by stacking the columns of 

the matrix  (𝛽̂𝑗 − 𝛽𝑗
∗) and  ⊗  is the Kronecker product. 

We have 
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𝐸𝑌
|𝜃°
{∑𝑡𝑟(𝑊𝑗

°)

𝑘°

𝑗=1

𝑡𝑟(Σ̂𝑗
−1Σ𝑗

°)} ≈∑𝑡𝑟(𝑊𝑗
°)

𝑘°

𝑗=1

𝑑𝑗
°𝑡𝑟 [(Σ𝑗

°)
−1
Σ𝑗
°] 

                                                       = ∑𝑡𝑟(𝑊𝑗
°)

𝑘°

𝑗=1

𝑑𝑗
°𝑚                                                                     (13) 

We replace the results (12) and (13) in (11) after we replace 𝑘° and 𝑊𝑗
° by 𝑘 and 

 𝑊̂𝑗  respectively.  (Naik et al., 2007) [12]. 

Then 

𝐸𝑌
|𝜃°
{𝐸𝑌

|𝜃°
∗ {−2𝐿𝑐(𝜙̂(𝑌), 𝜏̂(𝑌), 𝑌

∗, 𝑋)}} ≃ 𝐸𝑌
|𝜃°
{−2∑𝑛̂𝑗 𝑙𝑜𝑔 𝛼̂𝑗

𝑘

𝑗=1

+ 𝑛𝑚 𝑙𝑜𝑔(2𝜋)

+∑𝑛̂𝑗

𝑘

𝑗=1

𝑙𝑜𝑔(𝑑𝑒𝑡(𝛴̂𝑗))} +∑𝑑̂𝑗

𝑘

𝑗=1

𝑚𝑝𝑗 +∑𝑑̂𝑗𝑚

𝑘

𝑗=1

𝑛̂𝑗                                      (14) 

Finally, we base the model order estimation on the minimization of 

−2∑𝑛̂𝑗

𝑘

𝑗=1

log 𝛼̂𝑗 + 𝑛𝑚 log(2𝜋) +∑𝑛̂𝑗

𝑘

𝑗=1

log (𝑑𝑒𝑡(Σ̂𝑗)) +∑𝑑̂𝑗𝑚𝑝𝑗 +∑𝑑̂𝑗𝑚

𝑘

𝑗=1

𝑘

𝑗=1

𝑛̂𝑗 

Ignoring the term does not depend on the order(𝑘, 𝑝), we obtain the criterion for estimating 
the order of the multivariate gaussian regression mixture model  

𝑀𝑅𝐶𝑣(𝑘, 𝑝) =∑𝑛̂𝑗

𝑘

𝑗=1

𝑙𝑜𝑔 (𝑑𝑒𝑡(𝛴̂𝑗)) +∑𝑑̂𝑗𝑚(𝑝𝑗 + 𝑛̂𝑗) − 2∑𝑛̂𝑗

𝑘

𝑗=1

𝑙𝑜𝑔(𝛼̂𝑗)

𝑘

𝑗=1

                      (15) 

where 𝑝 = (𝑝1, … , 𝑝𝑘),   𝑛̂𝑗 = 𝑡𝑟(𝑊̂𝑗),    𝑝𝑗 = 𝑡𝑟(𝐻̂𝑗)  𝑎𝑛𝑑   𝑑̂𝑗 =
𝑛̂𝑗

𝑛̂𝑗−(𝑚+𝑝𝑗+1)
   

and we have 

(𝑘̂, 𝑝̂) = 𝑎𝑟𝑔𝑚𝑖𝑛
1≤𝑘≤𝐾,   1≤ 𝑝1 ,…, 𝑝𝑘≤𝑃

{𝑀𝑅𝐶𝑣(𝑘, 𝑝)} 

where 𝐾 and 𝑃 are sufficiently large such that 𝐾 ≥ 𝑘° and 𝑃 ≥ max { 𝑝𝑗
° , 𝑗 = 1,… , 𝑘°}. 

3.3. Remarks 

• 𝑚 = 1 (univariate case)  

𝑀𝑅𝐶𝑣(𝑘, 𝑝) =∑𝑛̂𝑗 𝑙𝑜𝑔(𝜎̂𝑗
2)

𝑘

𝑗=1

+∑𝑛̂𝑗

𝑘

𝑗=1

(𝑛̂𝑗 + 𝑝𝑗)

(𝑛̂𝑗 − 𝑝𝑗 − 2)
− 2∑𝑛̂𝑗 𝑙𝑜𝑔(𝛼̂𝑗) = MRC (𝑘, 𝑝)

𝑘

𝑗=1
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where 𝑝 = (𝑝1, … , 𝑝𝑘) 

This is the criterion defined by Naik et al. [12] 

• 𝑘 = 1  and  𝑚 = 1 (case of a single component and univariate regression)  

𝑀𝑅𝐶𝑣(1, 𝑝) = 𝑛𝑙𝑜𝑔(𝜎̂2) +
𝑛(𝑛 + 𝑝)

𝑛 − 𝑝 − 2
= 𝐴𝐼𝐶𝑐(𝑝) 

We obtain the corrected Akaike criterion proposed by Hurvich et al. [7] 

 

• 𝑘 = 1  (case of a single component and multivariate regression)  

𝑀𝑅𝐶𝑣(1, 𝑝) = 𝑛𝑙𝑜𝑔(Σ̂) + 𝑑𝑚(𝑝 + 𝑛) = 𝐴𝐼𝐶𝑐(𝑝) 

where  𝑑 =
𝑛

𝑛−(𝑚+𝑝+1)
 

We obtain the corrected Akaike criterion proposed by Edward et al. [6]  

4. Simulation 

We apply the criterion 𝑀𝑅𝐶𝑣 to simulated data from multivariate gaussian mixture 
regression models with the same covariates across components (𝑝1 = ⋯ = 𝑝𝑘 = 𝑝) and 
compare the results obtained with those of the criteria 𝐴𝐼𝐶 and 𝐵𝐼𝐶. 

Selection procedure:  

To simultaneously determine the number of components and explanatory variables for 
multivariate gaussian mixture regression models, we use the following procedure. 

For the given {(𝑘, 𝑝): 𝑘 = 1,… , 𝐾, 𝑝 = 1,… , 𝑃} 

1. We use the K-means algorithm (MacQueen et al., 1967) [10] to classify the 

observations of a candidate matrix 𝑋 into 𝑘 groups so that the initial probabilities 𝜏𝑖𝑗
(∘)

  

can be estimated to initialize the 𝐸𝑀 algorithm. 

2. We apply the 𝐸𝑀 algorithm to estimate the parameters of the multivariate mixture 
regression model 

3. We calculate the 𝑀𝑅𝐶𝑣,  𝐴𝐼𝐶, and 𝐵𝐼𝐶  

𝑀𝑅𝐶𝑣(𝑘, 𝑝) =∑𝑛̂𝑗

𝑘

𝑗=1

log (𝑑𝑒𝑡(Σ̂𝑗)) +∑𝑑̂𝑗𝑚(𝑝 + 𝑛̂𝑗) − 2∑𝑛̂𝑗

𝑘

𝑗=1

log(𝛼̂𝑗)

𝑘

𝑗=1

 

                                 𝐴𝐼𝐶(𝑘, 𝑝) = −2𝐿(𝜙̂, 𝑌, 𝑋) + 2𝑢(𝑘, 𝑝) 

𝐵𝐼𝐶(𝑘, 𝑝) = −2𝐿(𝜙̂, 𝑌, 𝑋) + log(𝑛)𝑢(𝑘, 𝑝) 

𝑢(𝑘, 𝑝) is the number of free parameters of multivariate regression mixture model 
𝑢(𝑘, 𝑝)  =  (𝑘 −  1)  +  𝑘𝑝𝑚 + 𝑘𝑚(𝑚 + 1) 2⁄  
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4. The orders estimated by these criteria are: 

       (𝑘̂, 𝑝̂) = 𝑎𝑟𝑔𝑚𝑖𝑛
1≤𝑘≤𝐾,1≤𝑝≤𝑃

{𝑀𝑅𝐶𝑣(𝑘, 𝑝)} 

(𝑘̂, 𝑝̂) = 𝑎𝑟𝑔𝑚𝑖𝑛
1≤𝑘≤𝐾,1≤𝑝≤𝑃

{𝐴𝐼𝐶(𝑘, 𝑝)} 

(𝑘̂, 𝑝̂) = 𝑎𝑟𝑔𝑚𝑖𝑛
1≤𝑘≤𝐾,1≤𝑝≤𝑃

{𝐵𝐼𝐶(𝑘, 𝑝)} 

 Example 1: We consider a multivariate gaussian mixture regression model with 

dimension (𝑚 = 2), and the true number of components (𝑘° = 2), each component has 

a multivariate regression model with three explanatory variables (𝑝° = 3), the response 

variable of each component is generated from  𝑌𝑗 = 𝑋𝑗
°𝛽𝑗
° + 𝜖𝑗

°, (𝑗 = 1, 2), where:  

 The elements of the 𝑛1 × 3 matrix 𝑋1
° and the 𝑛2 × 3 matrix 𝑋2

°  are generated 
from the uniform distributions 𝑈(0,5) and 𝑈(5,10) respectively 

 The true regression parameters are 𝛽1
° = (

1 1
1 1
1 1

) , 𝛽2
° = (

6 6
7 7
8 8

) 

 The rows of the error matrix 𝜖𝑗
° are assumed to be independent with identical 

𝒩2(0, 𝐼2) distributions (j = 1,2)   

We consider 100 samples generated from the true model, of size 𝑛 = 𝑛1 + 𝑛2 = 30  

and 𝑛 = 𝑛1 + 𝑛2 = 60. 

We consider seven candidate regression models  (𝑃 = 7) stored in a  𝑛𝑗 × 7 matrix 𝑋𝑗  in 

each of the two components. The first three columns of 𝑋𝑗 (𝑗 = 1, 2) are the same as 𝑋𝑗
°  

while the last four columns are generated from 𝑈(0,5) and 𝑈(10, 15) for 𝑋1  and 𝑋2 
respectively. The observed matrix 𝑋 is obtained by stacking 𝑋1 and 𝑋2 one on top of the 
other. Similarly, using the same method with  𝑌1  and  𝑌2, we construct the observed 
dependent variable 𝑌.  

We consider five sets of candidate components (𝐾 = 5). Hence, we have 35 possibilities, 
seven nested regression models in each of the five sets of candidate components. For 

each sample, we calculate the selection criteria 𝑀𝑅𝐶𝑣, 𝐴𝐼𝐶, and 𝐵𝐼𝐶 according to the 

selection procedure described below. The results are summarized in Tables 1 and 2. 
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Table 1: Order frequencies estimated on 100 samples (𝒌° = 𝟐, 𝒑° = 𝟑),  𝒏𝟏  =  𝒏𝟐 = 𝟏𝟓 

 

Table 2: Order frequencies estimated on 100 samples (𝒌° = 𝟐, 𝒑° = 𝟑),  𝒏𝟏  =  𝒏𝟐  =  𝟑𝟎 

 

 Example 2: The true model is a multivariate gaussian mixture regression model with 

dimension (𝑚 = 2), and three components (𝑘° = 3),  each component has a 

multivariate regression model with four explanatory variables (𝑝°  =  4), the response 

variable of each component is generated from 𝑌𝑗 = 𝑋𝑗
°𝛽𝑗
° + 𝜖𝑗

°, (𝑗 =  1, 2, 3) where: 

 The elements of the 𝑛1 × 4 matrix 𝑋1
°, the 𝑛2 × 4 matrix 𝑋2

°  and the 𝑛3 × 4 matrix 

𝑋3
°   are generated from the uniform distributions 𝑈(0,5), 𝑈(5,10) and 𝑈(10,15) 

respectively 

 The true regression parameters are  𝛽1
° = (

1 1
1 1
1 1
1 1

) , 𝛽2
° = (

1 1
2 2
3 3
4 4

) and  𝛽3
° = (

5 5
6 6
7 7
8 8

) 

 The rows of the error matrix 𝜖𝑗
° are assumed to be independent, with identical 

𝒩2(0, 𝐼2) distributions (𝑗 =  1, 2, 3) 

We consider 100 samples generated from the true model, of size  𝑛 = 𝑛1 + 𝑛2 + 𝑛3 = 30 
and 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 = 90. We consider seven candidate regression models  (𝑃 = 7) 
stored in a  𝑛𝑗 × 7  matrix 𝑋𝑗 in each of the three components. The first four columns 
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of 𝑋𝑗  (𝑗 = 1, 2, 3) are the same as 𝑋𝑗
° while the last three columns are generated from 

𝑈(0,5), 𝑈(5,10) and 𝑈(10,15) for 𝑋1,  𝑋2 and 𝑋3 respectively. The observed matrix 𝛸 is 

obtained by stacking 𝑋1, 𝑋2, and 𝑋3  one on top of the other. Similarly, using the same 
method with 𝑌1, 𝑌2, and 𝑌3, we construct the observed dependent variable 𝑌. We consider 
five sets of candidate components (𝐾 = 5). The results are summarized in Tables 3 and 

4. 

Table 3: Order frequencies estimated on 100 samples (𝒌° = 𝟑, 𝒑° = 𝟒),  𝒏𝟏= 𝒏𝟐 = 𝒏𝟑 = 𝟏𝟎 

 

Table 4: Order frequencies estimated on 100 samples (𝒌° = 𝟑, 𝒑° = 𝟒),  𝒏𝟏= 𝒏𝟐 = 𝒏𝟑 = 𝟑𝟎 

 

In view of the results, whether for mixture models of two or three distributions, the criterion 

𝑀𝑅𝐶𝑣 is clearly better than both the criteria 𝐴𝐼𝐶 and 𝐵𝐼𝐶 for small samples, in Table 3. for 

example, with 𝑛 =  30, the percentage of good selection is 90% with 𝑀𝑅𝐶𝑣,  61% and 
14% with 𝐵𝐼𝐶 and 𝐴𝐼𝐶 respectively. For large samples, the criteria 𝑀𝑅𝐶𝑣 and 𝐵𝐼𝐶 have 
the same performance, in Table 2. for example, with 𝑛 =  60, the percentage of good 

selection is 99% with 𝑀𝑅𝐶𝑣 and 100% with 𝐵𝐼𝐶. We also observe that the criterion 𝐴𝐼𝐶 is 
much less performant than the criteria 𝐵𝐼𝐶 and 𝑀𝑅𝐶𝑣 for both small and large samples.  
 
5. CONCLUSION 

In this paper, we derived the criterion 𝑀𝑅𝐶𝑣 for the joint selection of the number of 
components and variables for multivariate gaussian mixture regression models, which is 
based on the log-likelihood and the Kullback asymmetric divergence. We compared our 
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criterion  𝑀𝑅𝐶𝑣  with the criteria 𝐴𝐼𝐶 and 𝐵𝐼𝐶 on simulated data from multivariate gaussian 
mixture regression models for small and large samples. The numerical results show that 

the criterion 𝑀𝑅𝐶𝑣 outperforms the criteria 𝐴𝐼𝐶 and 𝐵𝐼𝐶 for small samples and has the 
same performance as the criterion 𝐵𝐼𝐶 for large samples. Therefore, we suggest using in 

an application the criterion 𝑀𝑅𝐶𝑣 against the criteria 𝐴𝐼𝐶 and 𝐵𝐼𝐶. 
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