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Abstract 

Weather prediction is an appealing but demanding endeavor because of its substantial effects on human 
existence and the complex dynamics of atmospheric movement. Importance of weather forecasting is huge 
in daily life activities, business, agriculture etc. so; scholarly genre is taking great interest in this field.  In 
weather prediction large amounts of data have been collected from multiple sources such as satellites, 
weather stations, radar and historical records, is complex task to process. Machine learning and deep 
learning approaches that rely on a huge amount of data with quickly and accurately become more popular. 
Numerous technique focus only temporal pattern of meteorological data, ignoring the correlations between 
multiple variables at various geographical locations. In this paper Chaotic Logistic Map Based Grey Wolf 
Optimization (CLMGWO) determine appropriate climate factor for each geographical location and Attention 
based Gated Recurrent Unit (AttGRU) provide a precise prediction of feature correlation with many 
parameter and station across temporal time stamp. Proposed method AttGRU_CLMGWO resolve the 
problem of feature selection with successfully capture concealed spatial interconnections and a wide range 
of enduring weather patterns. Finally AttGRU implemented with Root Mean Square Propagation (RMSProp) 
Optimizer to evaluation of mean square error. This error is used to recalibrate the weight and bais in order 
to get improved result. AttGRU_CLMGWO model is comprised with Graph Neural Network (GNN), 
Bayesian Multi-head Attention Encoder-Decoder Neural Network (BMAE-Net) and Convolutional Neural 
Networks (CNN). Proposed model AttGRU_CLMGWO has implemented in python using Jena Climate 
dataset and predict temperature and humidity by concurrently acquire data for crucial time stamp and 
weather forecasting. The results yielding from the AttGRU_CLMGWO is MSE - 1.3, an MAE - 0.41, and a 
MAPE - 0.2. 

Keywords: Weather Forecasting, Feature Selection, Gated Recurrent Network, Time Series, Wind 
Direction. 

 
1. INTRODUCTION 

The weather prediction is a crucial application of scientific computing.  It can predict future 
weather fluctuations, especially severe weather events like floods, droughts, and 
hurricanes, which is important for society (including daily activities, agriculture, energy 
production, transportation, industry, etc.). Over the last ten years, there has been 
significant progress in the scientific area of numerical weather prediction (NWP) due to 
the advancement of high-performance computing devices [1]. Traditional NWP 
approaches typically adhere to a simulation-based approach. This entails utilizing 
numerical simulations to solve partial differential equations (PDEs) representing the 
physical rules driving atmospheric conditions [2, 3, 4].  These NWP techniques often have 
low processing performance due to the complex nature of solving PDEs. For instance, 
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calculating a single simulation for a 10-day forecast with a spatial resolution of 
0.25◦×0.25◦ would take several hours on a supercomputer with hundreds of nodes [5].  
This restricts the number of ensemble members that can be employed for probabilistic 
weather predictions and greatly reduces the timeliness of daily weather forecasts.  
Furthermore, traditional NWP algorithms heavily depend on parametric numerical 
models. However, despite their high complexity, these models are sometimes deemed 
insufficient [6, 7]. For instance, mistakes might arise due to the parameterization of 
unresolved processes. To tackle the aforementioned challenges, a potential approach 
involves using artificial intelligence, namely deep learning, to develop data-driven weather 
forecasting methods. Deep neural networks are used to capture the association between 
observed input data and anticipated output data. AI-based techniques may balance model 
complexity, prediction resolution, and accuracy on GPUs for fast performance [8], [9]. The 
spatial resolution of FourCastNet [10] has been increased to 0.25◦ x 0.25◦, equivalent to 
the ECMWF Integrated Forecast Systems (IFS). It generates a 100-member, 24-hour 
forecast in 7 seconds utilising four GPUs. This is orders of magnitude quicker than typical 
NWP approaches. Nevertheless, the FourCastNet's prediction accuracy is still 
unsatisfactory. The RMSE of the 5-day Z500 prediction using a single model and a 100-
member ensemble is 484.5 and 462.5, respectively. These values are substantially lower 
than ECMWF's operational IFS of 333.7 [11]. It is hypothesised that many significant 
advancements are required before artificial intelligence (AI) technologies may surpass 
NWP. The majority of weather prediction systems were constructed based on the study 
or reanalysis of data beyond direct observations. The reanalysis datasets are often 
regarded as the most accurate estimates [12], [13] for most atmospheric variables, with 
the exception of some elements such as precipitation. This work uses ERA5, the 5th 
ECMWF reanalysis dataset [14]. Latitude, longitude, pressure levels (height), and time 
comprise the ERA5 dataset. We have the freedom to choose any number of weather 
parameters (such as geopotential, temperature, etc.), but we should not see them as 
contributing to a new dimension. The dataset, which has a size exceeding 2 petabytes 
(PB), is divided into two-dimensional (2D) slices based on latitude and longitude. This 
division is done to facilitate the process of downloading.  However, by defining a time 
point (hourly for the previous 60 years), pressure level (or Earth's surface), and weather 
component, a matrix of global reanalysis data may be obtained. The overall ERA5 data 
is A. Superscripts denote meteorological variables and pressure levels, whereas 
subscripts provide spatiotemporal locations. Example: AT850 t shows global temperature 
data in matrix form at time t and height 850hPa. For geopotential data at point (x, y), time 
t, and 500hPa height, see AZ500 x,y,t. It is important to note that AZ500 x,y,t is a single 
numerical value. In order to mitigate the aforementioned load, researchers initiated a 
secondary investigation that explores AI techniques for weather forecasting. Deep 
learning enables the direct learning of complicated functions (represented by f(·)) from 
large amounts of training data, without requiring knowledge of the underlying physical 
procedures or formulas.   Many deep neural networks describe f(·) as f(·; θ), where · is 
the input data and θ is the adjustable parameters. The Computer Vision (CV) analyses 
2D/3D cubes of image data, making it the closest to weather forecasting.  
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Over the last ten years, the CV community has created numerous successful network 
architectures, such as those mentioned in references [16] and [17]. More recently, they 
have adapted powerful architectures called transformers from the field of natural 
language processing [18] and have developed variants [19] that can effectively handle 
image data. AI-based approaches were first used in weather forecasting to address the 
challenges of predicting future weather data in settings where traditional NWP methods, 
such as radar or satellite data-based precipitation forecasting, are inadequate [20]. The 
remarkable capacity of deep neural networks to convey information effectively has 
contributed to their success in data-driven environments. This success has motivated 
researchers to investigate the challenges faced by NWP methods, such as the significant 
computational burden associated with direct medium-range weather forecasting. In fact, 
this computational task has consumed a substantial portion of the computational 
resources of weather forecast centers over the past decade. The following are the 
contributions made by this work: 

 First of all the globally optimize and efficiently anticipate the selection of parameters 
using the Grey wolf optimization algorithm, chaos has been employed to produce the 
chaotic grey wolf optimization algorithm. 

 Chaotic maps are used in optimizing algorithms to enhance efficiency by effectively 
analyzing the search area, taking into account the nature of dependability. The findings 
of the efficient parameter indicate that Chaotic Logistic Map Gray Wolf Optimization 
(CLMGWO) outperforms traditional GWOs in terms of convergence when compared 
to other methods and applications.  

 An attention-based multilayered GRU model has been developed with Root Mean 
Square Propagation (RMSProp) optimizer to evaluation of mean square error for 
improve the speed and stability of multi-step weather prediction. This model 
outperforms with other deep learning architectures and has been extensively 
compared to existing forecasting models, demonstrating its superiority. 

The paper is structured as follows: Section 1 comprises the project's introduction. Section-
2 provides a concise summary of the conducted literature survey.  Section-3 elucidates 
the operational procedures of the system. Section-4 portrays the inferences and results 
obtained. The "Conclusion" section in section 5 summarizes our findings and discusses 
potential next directions. 
 
2. RELATED WORKS 

Deep Learning (DL) has been used in recent years to investigate time series difficulties 
[21], in which the relationship between characteristics is apparent but challenging to 
discern. Traditional machine learning techniques may not work as well for systems whose 
behavior is primarily impacted by temporal or geographical context, like weather systems. 
In contrast, DL methods, which can automatically extract spatio-temporal features, are 
more suitable for gaining a deeper understanding of such systems.   
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Improved prediction accuracy may be achieved by accurately analysing the association 
and appropriately representing the information. As a result, DL has been accepted as a 
sensible and adaptable technique for analysing time series characteristics. Consequently, 
several scientists have used DL techniques for the purpose of weather prediction, which 
is a common and complex issue involving multi-dimensional time series data. Data-driven 
solutions are anticipated to tackle some traditional challenges in weather forecasting. In 
[22] introduces the weather predicting model based on graph neural networks (GNNs) to 
analyse the data produced by these sensors. Graph learning-based models, or GNNs, 
perform well empirically in a variety of machine learning techniques. 

A new neural network architecture, BMAE-Net, is described in [23]. A Bayesian inference-
optimized multi-head attention encoder-decoder framework is used. The main objective 
of BMAE-Net is to properly anticipate weather time series changes. Bayesian inference 
is added to the gated recurrent unit to generate the Bayesian-gated module. Next, each 
Bayesian layer's network architecture includes a multi-head attention mechanism to 
increase time duration prediction. Following that, Bayesian hyperparameter optimisation 
is used to create an encoder-decoder system. This framework deduces massive time-
series data's underlying links for reliable forecasts. A deep learning method, multivariate 
data decomposition approach, grid search algorithm, and attention mechanism are used 
to create a hybrid wind speed prediction model based on weather research and 
forecasting (WRF) simulation [24]. 

In [25] proposes an optimised stacked Bi-directional Long Short-Term Memory (BiLSTM)/ 
LSTM model to forecast univariate and multivariate hourly time series data using stacked 
LSTM layers, drop out architecture, and LSTM-based model. By tweaking six pertinent 
hyperparameters, Bayesian optimisation improves the model's performance. In order to 
anticipate many fundamental atmospheric variables on a worldwide grid, [26] offer a 
notably enhanced data-driven global weather forecasting system that makes use of a 
deep CNN. With just a few input atmospheric condition variables, it may be trained to 
predict intricate patterns of surface temperature. The goal of [27] is to convert a weather 
forecasting system using deterministic neural networks into an ensemble model. We 
evaluate four approaches to build the ensemble: using random dropout in the network, 
retraining the neural network, creating early perturbations using singular vector 
decomposition, and random beginning perturbations. In [28], a method for forecasting 
future temperature using a neural network based on historical temperature data is 
proposed. To be more precise, authors developed a CRNNmodel, which consists of a 
CNN and a RNN.  

While numerical models are now indispensable, they are costly to execute and include 
several physical phenomena that cannot be well represented by equations. The issue of 
error propagation during model solution is a significant factor that leads to inaccurate 
predictions. Hence, researchers are now prioritizing the advancement of a data-centric 
weather forecasting system that guarantees optimal efficacy and affordability, while 
delivering superior precision and reliability in weather forecasts. 
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2.1 Chaotic Grey Wolf Optimization (CGWO) 

Gray Wolf Optimization (GWO) is a meta-heuristic approach that draws inspiration from 
grey wolf hunting behavior and social structure. As apex predators, grey wolves often live 
in packs of five to twelve members, with a rigid hierarchy of dominance. Grey wolves hunt 
mostly by monitoring their prey, pursuing it, and then approaching it to annoy it until it 
stop. Drawing on the aforementioned information, an altered GWO algorithm that employs 
four operators to protect against the wolves becoming stuck at the ideal local point: 
Chaotic map, Opposition-based learning, Differential Evolution operators, and Disruption 
operator. A chaotic opposition based approach to choose the most appropriate starting 
population. Additionally, because DE operators function as a local search mechanism, 
we use them to enhance the wolves' capacity to exploit the region in their neighborhood. 
The  population's  diversity  is  essential  to  improving  the  search  process; the  disruption  
operator  keeps  the  population  diverse  while  enhancing  the  wolves'  capacity  for  
exploitation.  As  a  result,  the  suggested  approach  accounts  for  every  element  that  
has  an  impact  on  the  GWO's  performance. These studies try to improve the capacity 
for exploration and exploitation. There are, however, modified GWO approaches that 
focus on diversity or beginning population selection; nonetheless, no method can take 
into account all of these elements at once [29]. 

2.2 Attention-Based Gated Recurrent Unit (AttGRU):  

One of the most useful model in deep learning is Attention Based mechanism, which tell 
to an advancement of encoder–decoder technique, and were created to move forward 
the execution of long input arrangements. In Attention mechanism, the decoder can 
specifically get to the encoded data and employments a modern concept for the setting 
vector, which is presently calculated at each time step of the decoder, from the past 
covered up state and all the covered up states of the encoder. Trainable weights will be 
allotted out to these states and deliver diverse degrees of significance to all the 
components within the input arrangement.  

An improved Attention-Based mechanism that weighs different value with the GRU is 
proposed. Finally, the improved Attention-Based mechanism is combined with GRU, and 
CRS is used to generate the optimal parameter combination at the attention layer. As a 
result, Attention-Based Gated Recurrent Unit (AttGRU) model captures long-term impact 
and higher the degree of attention that GRU pays to the function of sub-windows in 
various factors. The proposed Attention-Based Gated Recurrent Unit (AttGRU) model in 
this study combines the attention mechanism with GRU. On the basis of the ability of 
GRU to handle time series prediction problems [30]. 
 
3. MATERIALS AND PROPOSED METHODS 

3.1 System model 

The initial step is loading the Jena dataset, which contains a collection of meteorological 
time series data.   The datasets are preprocessed using conventional methods. In this 
paper, the wind direction is transformed from degrees to axis and the time stamp is 
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converted from day to year. The preprocessed data is subjected to feature selection using 
the Chaotic Logistic Map Based Grey Wolf Optimisation algorithm, which effectively 
optimises and predicts the parameters on a global scale on time series pattern.  As shown 
in figure-1, the chosen features are fed into the Attention Based GRU Model which 
decoder can specifically get to the encoded data for calculating each time stamp, and 
trainable weight is allotted to these state and delivers the diverse degree of arrangement.  
After that AttGRU work RMSProp Optimizer in order to predict the evaluation matrix for 
the error correction. All the error can be reduced with the help of RMSProp to predict the 
weather condition. 

 

Figure 1: Block Diagram of AttGRU_CLMGWO 

(Attention Based Gated Recurrent Unit with Chaotic Logistic Map Based Grey Wolf 
Optimization) 

3.2 Dataset description 

Jena Climate is a collection of meteorological time series data acquired by the weather 
station located at the Max Planck Institute for BioGeochemistry in Jena, Germany. The 
collection comprises 14 distinct observations collected at 10-minute intervals across 
many years, including air temperature, atmospheric pressure, humidity, and wind 
direction. The dataset includes data spanning from January 1st, 2009 to December 31st, 
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2016, consisting of 420,451 data points [31]. This research examines the periodic 
regularity of temperature fluctuations throughout months and hours. It aims to map and 
establish rules for temperature changes within a 24-hour period for each month. There 
are variations in temperature across various months, and three components - month, cos 
(h), and sin (h) - are included in the dataset to represent these variations. The 
trigonometric function of hours is used to ensure that the same pattern repeats itself every 
24 hours. This research utilises data collected between 2014 and 2016, specifically 
picking the variables 'T (degC)', 'p (mbar)', 'rh (%)', and 'H2OC (mmol/mol)' from a pool of 
14 original quantities. Additionally, three time-related parameters are included. In all, 
there are 157,824 data points containing seven variables, which will be used for prediction 
purposes.  Data must be standardised due to distinctive element distribution and positive 
and negative values. Data was divided into three 6:2:2 subsets: training, validation, and 
testing. 

Preprocessing of data 

When the test wind turbine is stationary, the wind speed at this test site fluctuates between 
the wake and reference wind measurement locations. Furthermore, the geographical 
setting has a significant influence on the wake of wind turbines. The non-dimensional 

wind velocity ratio 𝑈𝑁𝑅 removes wind velocity and wake distribution changes from wake 
measurement. The test wind turbine's non-dimensional wind velocity 𝑈𝑛𝑜 is measured 
while operating and 𝑈𝑛𝑝 while motionless. The equation gives non-dimensional wind 

velocity ratio 𝑈𝑛𝑟. 

𝑈𝑛𝑟 =
𝑈𝑛𝑜

𝑈𝑛𝑝
                       (1) 

The values of 𝑈𝑛𝑜 and 𝑈𝑛𝑝 are averaged over all retrieved data.   Furthermore, the value 

of 𝑈𝑛𝑜 is determined by dividing the observed wake wind velocity 𝑈𝑤𝑎𝑘𝑒_𝑜, obtained from 

sonic anemometers positioned on the wake measuring mast, by the reference wind 
velocity 𝑈𝑤𝑎𝑘𝑒_𝑝 during the operation of the test wind turbine. The value of 𝑈𝑛𝑝 is 

determined by dividing the wake wind velocity 𝑈𝑤𝑎𝑘𝑒_𝑝 by the reference wind velocity 

𝑈𝑟𝑒𝑓_𝑝 while the test wind turbine is not moving. The values of 𝑈𝑛𝑜 and 𝑈𝑛𝑝 are explicitly 

specified as   

𝑈𝑛𝑜 =
𝑈𝑤𝑎𝑘𝑒_𝑜

𝑈𝑟𝑒𝑓_𝑝
 𝑈𝑛𝑝 =

𝑈𝑤𝑎𝑘𝑒_𝑝

𝑈𝑟𝑒𝑓_𝑝
   (2) 

Weather impacts building energy usage and solar energy generation. Temperature 
changes affect heating and cooling needs, thus buildings with similar temperature 
patterns should have similar demands. Sunlight is the main energy source for PV systems 
and increases with temperature. Because of their importance, temperature and global 
horizontal irradiance (GHI) were taken into account while matching timestamps to 
reconstruct building load. We match each time stamp t with a collection of comparable 
timestamps θ with the aid of this instruction. Put differently, every period t is associated 
with a collection of similar timestamps𝜃𝑡 = {𝜃𝑡}. All premises have identical settings.   
Since each premise k has a unique PV installation date, the time stamps are separated 
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into two sets: pre- and post-installation. PV installation time is 𝑡𝑘,𝐼. β represents time 

stamps before installation 𝑡 < 𝑡𝑘,𝐼 while α represents time stamps after installation 𝑡 > 𝑡𝑘,𝐼. 

In order to account for discrepancies between the reported and real dates for PV system 
activation, we also avoid from utilizing time stamps that are set to expire on the day of 
installation. As a buffer in this work, b = a = 20 days, hence for each premise k, the β and 
α are defined as 

𝛽𝑘 = {𝑡: 𝑡𝜖𝑡 < (𝑡𝑘,𝐼 − 𝑏)}   (3) 

We determine the collection of similar timestamps after installation for each 𝛽𝑘,𝑖𝜖𝛽𝑘 

𝜑𝑘,𝑖
(𝛽)

= {𝜑𝑡: 𝑡𝜖𝛽𝑘,𝑖}                     (4) 

Where parenthetical superscripts represent all premise k time stamps. These generate 
two 2D dictionaries with equivalent timestamps for each time stamp in k and k.  

First and foremost, characteristics that are superfluous or that could include duplicate 
data must be eliminated. To achieve this objective, we used the values of the covariance 
matrix. Several humidity and temperature metrics were removed from the dataset as a 
consequence of this investigation because there were too many zeros, the column lights 
were also removed. The filters were employed after a comprehensive study, including 
factors such as correlation, zeros, null values, and other relevant discoveries. 
Furthermore, it is essential to scale the characteristics of the dataset prior to training the 
model. This is due to the limited efficacy of the current models within a narrower numerical 
spectrum. Optimizers can readily identify the learning rate, which creates a favourable 
setting for testing. Equation (5) illustrates the process of scaling the dataset, which is a 

necessary pre-processing step before to training. The term 𝑋′  denotes the dataset that 
has been scaled. The data is scaled down inside a discrete set, ranging from -1 to 1, 
using minmax scalar, and then retrieved.   

The scalar value x represents a value taken from a feature vector 𝑋. 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 
correspond to the lowest and maximum scalar values, respectively, obtained from the 

feature vector 𝑋.   By using Equation (5) 

𝑥′ =
(𝑥−𝑥𝑚𝑖𝑛)(𝑚𝑎𝑥−min)

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
+ min    𝑥𝜖𝑋                   (5) 

Furthermore, the weight factors for each characteristic are computed. This is achieved by 
using the scaled data to evaluate several models in order to determine the optimal model 
configurations and training parameters.  

3.3 Proposed methodology for Chaotic Logical Map based GWO 

 Proposed methodology implements Chaotic Logical Map based algorithm with a 
modified Grey Wolf Optimization (GWO) algorithm called CLM Grey Wolf Optimization 
(CLMGWO). It is used for feature selection. 

 The selection of a subset of features which used to maximize classification accuracy. 
It minimizes the selected featured numbers.  
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 Grey wolf’s population called "agents" (candidate solutions) is initialized randomly. A 
subset of features is represented by each agent. 

 By using classification algorithm to measure their fitness and accuracy, agents are set 
to train and evaluate.  

 Agents are guided by top hierarchy then sub hierarchy called alpha, beta, delta wolves 
for the movement of the pack (data). 

 To get optimal features subsets, iterations of solutions are updated.  

 For probabilistically toggle feature values in each agent's solution a transfer function is 
used.  

3.3.1 Feature selection using CLMGWO 

Feature selection involves the selection of a concise subset of characteristics that are 
both essential and adequate to accurately define the target notion. The appropriate 
feature set is essential for every learning algorithm since it's its only source of knowledge.   
The main goal of feature selection is to avoid selecting too many traits. If a limited number 
of features are chosen, it is quite likely that the information included in this collection of 
features is minimal. GWO is an optimization heuristic that utilizes the selection criteria of 
grey wolves. It was created by Mirjalili et al. in 2014. This algorithm is a meta-heuristic 
approach that is enhanced by the observed framework of hunting behaviors and social 
organization of grey wolves.   Not every GWO search iteration can be global. Thus, finding 
the global best answer is sometimes necessary. There was consistent search 
functionality. The GWO strategy for prey seeking employs a hierarchical approach, 
including the encircling, hunting, attacking, and search for prey employing optimization 
techniques. The hierarchical technique divides wolves into four categories. The first three 
dominant wolves, α, β, and δ, guide and supervise the other wolves' hunting efforts.   Grey 
wolves use a hunting strategy known as encircling, when they surround their victim and 
communicate the prey's location to one another. After the prey's location is identified, the 
hunting process is carried out by other wolves under the leadership of the leader wolves.   
The arrangement of the wolves around the prey is revised according on the guidance of 
leader wolves in order to determine the prey's location. The method of assaulting prey 
involves the process of exploitation. The search for prey involves an exploratory phase 
and terminates by abruptly deviating from the best option.  Grey wolves use the surround 
prey technique to isolate their victim according to set guidelines while hunting. A flow 
diagram is illustrated for feature selection in GWO. This flowchart provides a visual 
representation of the Feature Selection using GWO algorithm, helping to understand the 
sequence of steps and decision-making in the process.  
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Figure 2: Flow diagram for Feature selection using CLMGWO 

Algorithm for the proposed Grey Wolf Optimization (GWO) approach for feature selection 

Algorithm 1: Proposed CLMGWO training model 

Input: The weather data, hyper parameter space W, epochs 

Output: the optimal hyper parameter, the prediction of temperature 

1: Initialize weather parameters 

2: Number of grey wolves (n) 

3: Maximum iterations (p) 

4: Training data 

5: Objective function (e.g. classification accuracy) 

6: Initialize population of n grey wolves (agents) 
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7: Each wolf is a d-dimensional vector representing a subset of d features 

8: Identify best parameter 3 wolves as alphas (α), betas (β), and deltas (δ) 

9: Leader wolves based on objective function 

10: for i =1 to p do  

11: Update positions of all followers using encircling, hunting, and attacking movement 
equations based on α, β, δ positions 

12: Update grey wolf positions stochastically to explore search space 

13: Evaluate new wolf positions using objective function and update α, β, δ leader wolves 

14: Repeat step 10 for maximum iterations 

15: Return best alpha wolf position 

16: Represents selected feature subset 

17: Obtained the best parameter and assess the performance of selected features 

So in essence, GWO mimics the social hierarchy and hunting behavior of grey wolves to 
perform optimization search for finding the fittest feature subsets through iterative 
evaluation and evolution guided by leader wolves. 

𝑃′ = |𝑅′. 𝑌′
𝑝(𝑡) − 𝑌′(𝑡)|                    (6) 

𝑌′(𝑡 + 1) = 𝑌𝑝(𝑡) − 𝑉′. 𝑃′                    (7) 

The equations (6) and (7) correspond to the iteration number 𝑡. The labels 𝑌′
𝑝 and 

𝑌′ stand for the level of prey and grey wolf, respectively. 𝑉′ = 2𝑎′ 𝑟′1 − 𝑎′, 𝑅 = 2𝑟′2depend 
on the number of iterations and the random vectors of [0,1]. The features of the parameter 

𝑎′ are successively lowered from 2 to 0. Both 𝑟′1 and 𝑟′2 are random vectors.   The hunting 
technique for capturing prey is carried out in accordance with the previous regulations. 

𝑃′𝑖 = |𝑅′
𝑖. 𝑌′

𝑖(𝑡) − 𝑌𝑖(𝑡)|    (8) 

Where, 𝑖 represent 𝛼, 𝛽 and 𝛿 

𝑌′(𝑡 + 1) = ∑ 𝑌′
𝑖(𝑡) − 𝑉′𝑖𝑖={ 𝛼,𝛽,𝛿} . 𝑃𝑖  (9) 

In equations (8) and (9), the variables 𝑋𝑖 represent the location of leader wolves 𝑅′
𝑖, 

whereas 𝑉′𝑖 represents a random vector. The determination of assault and prey detection 
is shown by the vector 𝑉, 𝑅′.  An analysis is conducted when 𝐴 is larger than 1 or 𝐴 is less 
than -1. Otherwise, C is greater than 1. Conversely, the theft occurs when the absolute 
value of |V|<1 and |R|<1.   

This study introduces a novel and effective strategy to enhance the Software reliability 
growth model (SRGM) metrics in order to enhance the searching behaviour of the GWO.   
A refined grey wolf optimization method is proposed, using an adaptable chaotic search 
approach to increase the search process and minimize the possibility of inaccurate 
predictions via the CGWO algorithm. The Different forms of chaotic maps provide chaotic 
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variables for chaotic algorithms. The chaotic search strategy is introduced and 
characterized while considering the chaotic map. 

𝐶𝑥𝑖
𝑛+1 = μ𝐶𝑥𝑖

𝑛(1 − 𝐶𝑥𝑖
𝑛)                     (10) 

In equation (10), the symbol 𝐶𝑥𝑖
𝑛 represents the chaotic variable, while the symbol n 

represents the number of iterations. Researchers, mathematicians, and medical 
scientists have extensively used these chaotic maps in the area of optimisation.  
Efficiently navigating the search is clearly beneficial.   

Initial chaotic maps are [0, 1]. Statistical study of the literature gives these maps a starting 
value of 0.7. Every chaotic map has a unique attitude. Chaos maps help determine data.  
Every user-defined grey wolf in the target zone is checked for fitness and categorised by 
condition using standard benchmarking metrics. The issue has goal and constraint 
violation functions. Formulate minimal problems. It might be phrased as  

𝑚𝑖𝑛𝑄(𝑦), 𝑦 = (𝑦1, 𝑦2, 𝑦3, … 𝑦𝑛)ϵ𝑃𝑛                                       (11) 

In equation (11), the variable 𝑛 represents the estimated number of configurations of a 
feasible solution. The symbol 𝑌𝜖𝑄𝜖𝑆, 𝑄 indicates that 𝑌 belongs to the potential area 𝑄 
inside the search space S. Furthermore, 𝑄 is defined as an n-dimensional rectangle. The 
domain of 𝑃 is characterised by a lower bound (l) and an upper bound (u), as specified in 

Equation (12). The 𝑄 space, stated in Equation (13), represents the range of limitations 
(𝑔 > 0) in P. 

𝑙(𝑗) ≤ 𝑦(𝑗) ≤ 𝑢(𝑗),     1 ≤ 𝑗 ≤ 𝑛     (12) 

𝑟𝑘(𝑦) ≤ 0, 𝑓𝑜𝑟 𝑘 = 1,2, … 𝑣                                           (13) 

𝑠𝑘(𝑦) = 0, 𝑓𝑜𝑟 𝑘 = 𝑣 + 1, … . 𝑔     (14) 

If a solution in 𝑄 space satisfies either the constraint 𝑟𝑢 or 𝑠𝑢, then 𝑟𝑢 is considered an 
active limitation at 𝑦 in equations (13) and (14), whereas 𝑟𝑘(y)  and 𝑠𝑘(y) are regarded as 
inequality and equality restrictions, correspondingly.   

The suggested approach, known as the chaotic GWO algorithm, is used to effectively 
solve optimization issues. The program begins by initializing a population of wolves. The 

chaotic map value is initialized as 𝑥0 and then updated continually.   

The parameters 𝑎′, 𝐴′, 𝐶′ are sequentially engaged in carrying out the exploration and 

exploitation procedure. The variable 𝑡 represents the number of iterations. The fitness of 
each search wolf is assessed using the variables 𝑥𝛼 , 𝑥𝛽 and 𝑥𝛿.   

The first wolf appears as α, the second as β, and the third as δ. Grey wolves are 
categorised by iterative fitness. Chaotic map equations increase chaotic number. For 
every search wolf, both the location and the parameter value are changed, as stated in 
(10). Next, the poorest fit wolf is replaced with the best fit wolf. The CLMGWO method 
demonstrates the ideal solution by observing the fitness of an alpha wolf towards the end 
of the iteration. This strategy yields superior outcomes and efficiently saves computational 
resources.  
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3.3.2 Proposed Methodology for building an attention-based GRU model: 

 To compute attention, vector an Attention Layer custom layer is defined over the GRU 
hidden state sequence. 

 This layer is consisted of two main parts: Computing an attention score between 
individually hidden state then a context vector. 

 To compute a weighted average context vector, the attention scores is used. 

 The entire context from the sequence is condensed by the output attention vector and 
fed through a dense layer for obtaining desired results.  

 return_sequences=True is used to process the input sequence. 

 To compute the attention vector for Attention Layer, GRU layer is wrapped. 

 A final Dense layer with 1 unit makes a prediction based on the attention vector and 
model is accumulated with the RMSProp optimizer and mean square error. 

An artificial neural network (ANN) is a widely used AI method that emulates the 
functioning of human neurons to handle vast quantities of input simultaneously and learn 
effectively.   ANNs are deterministic models that ignore time and focus on input and output 
variables.  Using the input and weight vectors, the output is internally determined.  Weight 
vector and decision boundary are perpendicular. An activation function affects the 
perceptron's input response, giving the ANN various decision bounds. However, a 
recurrent neural network (RNN) may dynamically map inputs to outputs, taking all time 
steps into account.  RNN are particularly suitable for analysing time-series data due to 
their ability to sequentially analyse the input, while retaining an internal state that carries 
information from one-time step to the next. The most popular and effective RNN is the 
LSTM. To avoid RNN long-term reliance, the LSTM preserves differential input values 
during backpropagation. The RNN version GRU simplifies LSTM structure by lowering 
hidden state update computation. Figure-2 shows that it solves long-term reliance and 
preserves LSTM performance.   

 

Figure 3: Attention Based GRU Model 
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Figure 4: Architecture of Attention Based GRU Model 

There are input and forget gates installed in the GRU cell. The input and forget gates are 
controlled by the gate controller, represented by the letter z. The input gate is open when 
z = 1, while the forget gate is closed otherwise. The input gate is closed and the forget 
gate is open when the value of z equals zero. Every iteration stores the previous (t-1) 
memory and resets the current time step's input. The following equations control the GRU 
cell: (15) – (18). 

𝑟𝑡 = 𝜎(𝑊𝑟ℎ𝑡−1 + 𝑈𝑟𝑥𝑡)    (15) 

𝑧𝑡 = 𝜎(𝑊𝑧ℎ𝑡−1 + 𝑈𝑧𝑥𝑡)    (16) 

𝑐𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑐(ℎ𝑡−1 × 𝑟) + 𝑈𝑐𝑥𝑡)   (17) 

ℎ𝑐(𝑧 × 𝑐) + ((1 − 𝑧) × ℎ𝑡−1)   (18) 

In order to create our GRU model, we considered hyperparameters and used a GRU 
network to anticipate the weather at 24 distinct time periods (spanning from one hour to 
one day in the future). Two hidden layers made up the configuration of the GRU model.  
The GRU model has two hidden layers, each with 13 nodes. The number of hidden layers 
is equal to the product of the output layer's size and 2/3 of the input layer's nodes.   
Equation (19) gives the scaled exponential linear unit (SELU), which was the activation 
function used in our investigation. The stochastic variable denoted by α in this equation 
is chosen at random during training from a uniform distribution. In the course of testing, 
however, α is fixed at 1.67326, which is the distribution's expected value.  Furthermore, 
λ is an extra parameter that's utilised to calculate the slope; by default, its value is 1.0507.   
The reason SELU works so well for training deep learning models is because of its 
remarkable self-normalization abilities and its ability to use equation (20) with δ = 1 to get 
around the problem of vanishing gradients. The learning rate and learning epoch were 
configured as 0.001 and 500, correspondingly. 

𝑓(𝛼, λ, δ) =    {
λ(α𝑒𝑥 − 𝛼)𝑓𝑜𝑟 𝑥 < 0

λx for x ≥ 0
         (19) 
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𝐿δ(𝑦, 𝑓(𝑥)) = {
1/2(𝑓(𝑥))2𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)𝑓𝑜𝑟 𝑥 < 0|

δ|𝑦 − 𝑓(𝑥)| −
1

2𝛿2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (20) 

When the GRU network processes a longer input sequence, the accuracy of the output 
sequence prediction decreases. Even though input variables may have different 
associations with the forecasting goal, the network handles them all equally. Attention 
mechanisms may concentrate on key input variables. Encoders create attention vectors 
from input, while decoders create hidden states from encoder output. The encoder 
assigns an attention score to each concealed state by utilising the decoder's hidden state 
from the previous viewpoint. Applying a soft-max function to the attention score generates 
an attention vector. Thus, the encoder prioritises related input variables when the decoder 
anticipates output. 
 
4. RESULT AND PERFORMANCE ANALYSIS 

The experimental data is analyzed using Python software, using the parameters of MSE, 
MAE and MAPE. The parameters are compared with four advanced methods: Graph 
Neural Networks (GNNs) [22], Bayesian inference strategy (BMAE-Net) [23], 
convolutional neural network (CNN) [26], and the proposed AttGRU_CLMGWO.  

Mean Square Error (MSE): The model's prediction using the MSE technique quantifies 
the difference between the actual observation and the estimated observation. The 
application of data enhances the model's prediction power to some extent without 
excluding any necessary variables. The Mean Squared Error (MSE) is expressed as: 

𝑀𝑆𝐸 = ∑ (𝑞𝑘 − 𝑞′𝑘)2𝑛
𝑘=1     (21) 

In equation (21), 𝑞𝑘 is the total count of identified faults at the specific time 𝑡𝑘, using real 
data. 𝑞′𝑘 is the estimated total count of identified discrepancies at time 𝑡𝑘, using the 
number of observations in the dataset of software failures. 

MAE and MAPE: The developed model's efficiency is determined using MAE and MAPE 
after the predicted values have been obtained. As model efficiency increases, error 
parameters should decrease. The expressions for the parameters are provided below. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑒𝑘|𝑁

𝑘=1                                                                 22 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑘−𝑦′𝑘|

𝑦𝑘

𝑁
𝑘=1 ∗ 100%                                          23 

Where the error factor, denoted as 𝑒𝑘, represents the difference among the actual value 

𝑦𝑘 and the anticipated value 𝑦′𝑘. 
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Figure 5: Convergence of fitness over Iterations 

 

Figure 6: Analysis of actual and predicted data during testing 

 

Figure 7: Analysis of actual and predicted data during training 



Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 

ISSN: 1671-5497 
E-Publication: Online Open Access 
Vol: 43 Issue: 08-2024 
DOI: 10.5281/zenodo.13284361 

 

Aug 2024 | 17  

Figure 6 illustrates the real and forecasted data throughout the testing assessment. The 
horizontal axis depicts the quantity of samples, and the vertical axis illustrates the close1 
value. The greatest real value is obtained when the number of samples is either 200 or 
1000 during the analysis. Figure 7 illustrates the real and forecasted data during the 
training assessment. The horizontal axis depicts the quantity of samples, and the vertical 
axis illustrates the close1 value. The greatest real value is achieved when the number of 
samples is either 200 or 800 during analysis.  

Table 1: Comparison of train and testing values for various metrics 

Methods Train Test 

MSE 1.3601 1.2228 

MAE 0.4194 0.4067 

MAPE 0.265 0.2129 

 
Table 2: Comparative analysis between existing and proposed methods 

Methods GNNs [22] BMAE-Net [23] CNN [26] AttGRU CLMGWO [proposed] 

MSE 3.5 2.6 4.3 1.3 

MAE 4.2 3.7 4.2 0.41 

MAPE 2.4 3.9 3.7 0.2 

 
5. FUTURE SCOPE  

The scope of this study is to further utilization of AttGRU_CLMGWO model. This model 
illustrated the iterative training methods and comparing the desired results continuously. 
This model is adjusting weights and biases too by aiming minimum error. The entire 
system supports to discern complex input into desired output. Through this study we have 
implemented humidity, temperature for hours and day. Although there are several 
potential directions of this study including by using predictive framework air density, 
barometric pressure can be measured effectively. Additionally, we can extend our study 
by extending various geographical regions or several climatic factors.  
 
6. CONCLUSION 

This study use AttGRU_CLMGWO for weather forecasting. The procedure employs an 
iterative training method, where by it consistently compares the observed output with the 
desired output and computes the error. This error is used to recalibrate the weights and 
bias in order to get an improved result. Therefore, this strategy aims to reduce the error.   
The system takes complicated factors as input and utilizes them to develop intelligent 
patterns during training. It then employs these patterns to make predictions. The input 
parameters considered for the predictions are temperature and humidity measurements 
from one hour and one day before, in addition to the seasonal factor. Moreover, this task 
may be expanded by using other factors like air density, precipitation, and barometric 
pressure to improve the precision of the forecasts and provide more complete weather 
predictions. 
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